ladderNet代码分析

import tensorflow as tf
import input_data
import math
import os
import csv
from tqdm import tqdm

layer_sizes = [784, 1000, 500, 250, 250, 250, 10]

L = len(layer_sizes) - 1  # number of layers

num_examples = 60000
num_epochs = 150
num_labeled = 100

starter_learning_rate = 0.02

decay_after = 15  # epoch after which to begin learning rate decay 15个epoch之后LR降低

batch_size = 100
num_iter = (num_examples/batch_size) * num_epochs  # number of loop iterations

inputs = tf.placeholder(tf.float32, shape=(None, layer_sizes[0]))
outputs = tf.placeholder(tf.float32)


def bi(inits, size, name):
    return tf.Variable(inits * tf.ones([size]), name=name)


def wi(shape, name):
    return tf.Variable(tf.random_normal(shape, name=name)) / math.sqrt(shape[0])


# 把lay_sizes打包成元组列表[(784,1000),(1000,500).........]
# shapes = zip(layer_sizes[:-1], layer_sizes[1:])  # shapes of linear layers
shapes = list(zip(list(layer_sizes)[:-1], list(layer_sizes[1:])))

weights = {'W': [wi(s, "W") for s in shapes],  # Encoder weights
           'V': [wi(s[::-1], "V") for s in shapes],  # Decoder weights
           # batch normalization parameter to shift the normalized value
           'beta': [bi(0.0, layer_sizes[l+1], "beta") for l in range(L)],
           # batch normalization parameter to scale the normalized value
           'gamma': [bi(1.0, layer_sizes[l+1], "beta") for l in range(L)]}

noise_std = 0.3  # scaling factor for noise used in corrupted encoder

# hyperparameters that denote the importance of each layer 每层的权重
denoising_cost = [1000.0, 10.0, 0.10, 0.10, 0.10, 0.10, 0.10]

join = lambda l, u: tf.concat([l, u], 0) # 组合tensor
# 制造数据,有监督大小是bacth_size,无监督大小是所有样本减去bacth_size
labeled = lambda x: tf.slice(x, [0, 0], [batch_size, -1]) if x is not None else x
unlabeled = lambda x: tf.slice(x, [batch_size, 0], [-1, -1]) if x is not None else x
split_lu = lambda x: (labeled(x), unlabeled(x))

training = tf.placeholder(tf.bool)

# to calculate the moving averages of mean and variance 计算滑动平均
# 滑动平均更新参数依据公式:shadow_variable(cur) = decay * shadow_variable(pre) + (1 - decay) * variable
# 其中,decay控制更新速率,一般取值0.9以上,值越大,更新越慢,值越稳定;
# variable是当前变量的值;shadow_variable(pre)为上一次更新参数值;shadow_variable(cur)当前更新参数值。

ewma = tf.train.ExponentialMovingAverage(decay=0.99)
bn_assigns = []  # this list stores the updates to be made to average mean and variance

# 批归一化处理
# 1.加快训练速度
# 2.可以省去dropout,L1, L2等正则化处理方法
# 3.提高模型训练精度
def batch_normalization(batch, mean=None, var=None):
    if mean is None or var is None:
        mean, var = tf.nn.moments(batch, axes=[0])  # 计算平均值和方差
    return (batch - mean) / tf.sqrt(var + tf.constant(1e-10))

# average mean and variance of all layers 占位list[tf.Variable()]
running_mean = [tf.Variable(tf.constant(0.0, shape=[l]), trainable=False) for l in layer_sizes[1:]]
running_var = [tf.Variable(tf.constant(1.0, shape=[l]), trainable=False) for l in layer_sizes[1:]]


def update_batch_normalization(batch, l):
    "batch normalize + update average mean and variance of layer l"
    mean, var = tf.nn.moments(batch, axes=[0])
    assign_mean = running_mean[l-1].assign(mean)  # 赋值
    assign_var = running_var[l-1].assign(var)
    bn_assigns.append(ewma.apply([running_mean[l-1], running_var[l-1]]))
    with tf.control_dependencies([assign_mean, assign_var]):
        return (batch - mean) / tf.sqrt(var + 1e-10)


def encoder(inputs, noise_std):
    h = inputs + tf.random_normal(tf.shape(inputs)) * noise_std  # add noise to input
    d = {}  # to store the pre-activation, activation, mean and variance for each layer
    # The data for labeled and unlabeled examples are stored separately
    d['labeled'] = {'z': {}, 'm': {}, 'v': {}, 'h': {}}
    d['unlabeled'] = {'z': {}, 'm': {}, 'v': {}, 'h': {}}
    d['labeled']['z'][0], d['unlabeled']['z'][0] = split_lu(h)
    for l in range(1, L+1):
        print("Layer ", l, ": ", layer_sizes[l-1], " -> ", layer_sizes[l])
        d['labeled']['h'][l-1], d['unlabeled']['h'][l-1] = split_lu(h)
        z_pre = tf.matmul(h, weights['W'][l-1])  # pre-activation
        z_pre_l, z_pre_u = split_lu(z_pre)  # split labeled and unlabeled examples

        m, v = tf.nn.moments(z_pre_u, axes=[0])

        # if training:
        def training_batch_norm():
            # Training batch normalization
            # batch normalization for labeled and unlabeled examples is performed separately
            if noise_std > 0:
                # Corrupted encoder
                # batch normalization + noise
                z = join(batch_normalization(z_pre_l), batch_normalization(z_pre_u, m, v))
                z += tf.random_normal(tf.shape(z_pre)) * noise_std
            else:
                # Clean encoder
                # batch normalization + update the average mean and variance using batch mean and variance of labeled examples
                z = join(update_batch_normalization(z_pre_l, l), batch_normalization(z_pre_u, m, v))
            return z

        # else:
        def eval_batch_norm():
            # Evaluation batch normalization
            # obtain average mean and variance and use it to normalize the batch
            mean = ewma.average(running_mean[l-1])  # 返回平均值是running_mean[l-1]的变量
            var = ewma.average(running_var[l-1])  # 返回平均值是running_var[l-1]的变量
            z = batch_normalization(z_pre, mean, var)
            # Instead of the above statement, the use of the following 2 statements containing a typo
            # consistently produces a 0.2% higher accuracy for unclear reasons.
            # m_l, v_l = tf.nn.moments(z_pre_l, axes=[0])
            # z = join(batch_normalization(z_pre_l, m_l, mean, var), batch_normalization(z_pre_u, mean, var))
            return z

        # perform batch normalization according to value of boolean "training" placeholder:
        # training == True --> training_batch_norm else --> eval_batch_norm
        z = tf.cond(training, training_batch_norm, eval_batch_norm)

        if l == L:
            # use softmax activation in output layer
            h = tf.nn.softmax(weights['gamma'][l-1] * (z + weights["beta"][l-1]))
        else:
            # use ReLU activation in hidden layers
            h = tf.nn.relu(z + weights["beta"][l-1])
        d['labeled']['z'][l], d['unlabeled']['z'][l] = split_lu(z)  # batch_normalization之后的输入
        d['unlabeled']['m'][l], d['unlabeled']['v'][l] = m, v  # save mean and variance of unlabeled examples for decoding
    d['labeled']['h'][l], d['unlabeled']['h'][l] = split_lu(h)
    return h, d

print("=== Corrupted Encoder ===")
y_c, corr = encoder(inputs, noise_std)

print("=== Clean Encoder ===")
y, clean = encoder(inputs, 0.0)  # 0.0 -> do not add noise

print("=== Decoder ===")


def g_gauss(z_c, u, size):
    "gaussian denoising function proposed in the original paper"
    wi = lambda inits, name: tf.Variable(inits * tf.ones([size]), name=name)
    a1 = wi(0., 'a1')
    a2 = wi(1., 'a2')
    a3 = wi(0., 'a3')
    a4 = wi(0., 'a4')
    a5 = wi(0., 'a5')

    a6 = wi(0., 'a6')
    a7 = wi(1., 'a7')
    a8 = wi(0., 'a8')
    a9 = wi(0., 'a9')
    a10 = wi(0., 'a10')

    mu = a1 * tf.sigmoid(a2 * u + a3) + a4 * u + a5
    v = a6 * tf.sigmoid(a7 * u + a8) + a9 * u + a10

    z_est = (z_c - mu) * v + mu
    return z_est

# Decoder
z_est = {}
d_cost = []  # to store the denoising cost of all layers
for l in range(L, -1, -1):  # 倒序到0
    print("Layer ", l, ": ", layer_sizes[l+1] if l+1 < len(layer_sizes) else None, " -> ", layer_sizes[l], ", denoising cost: ", denoising_cost[l])
    z, z_c = clean['unlabeled']['z'][l], corr['unlabeled']['z'][l]
    m, v = clean['unlabeled']['m'].get(l, 0), clean['unlabeled']['v'].get(l, 1-1e-10)
    if l == L:
        u = unlabeled(y_c)
    else:
        u = tf.matmul(z_est[l+1], weights['V'][l])
    u = batch_normalization(u)
    z_est[l] = g_gauss(z_c, u, layer_sizes[l])
    z_est_bn = (z_est[l] - m) / v
    # append the cost of this layer to d_cost
    d_cost.append((tf.reduce_mean(tf.reduce_sum(tf.square(z_est_bn - z), 1)) / layer_sizes[l]) * denoising_cost[l])

# calculate total unsupervised cost by adding the denoising cost of all layers
u_cost = tf.add_n(d_cost)

y_N = labeled(y_c)
cost = -tf.reduce_mean(tf.reduce_sum(outputs*tf.log(y_N), 1))  # supervised cost
loss = cost + u_cost  # total cost

pred_cost = -tf.reduce_mean(tf.reduce_sum(outputs*tf.log(y), 1))  # cost used for prediction

# axis=1的时候,将每一行最大元素所在的索引记录下来,最后返回每一行最大元素所在的索引数组。
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(outputs, 1))  # no of correct predictions
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) * tf.constant(100.0) # tf.cast 数据类型转换

learning_rate = tf.Variable(starter_learning_rate, trainable=False)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)

# add the updates of batch normalization statistics to train_step
bn_updates = tf.group(*bn_assigns)  # *bn_assigns 代表[]中所有元素
# tf.control_dependencies 指定某些操作执行的依赖关系
# control_dependencies(control_inputs)返回一个控制依赖的上下文管理器,
# 使用with关键字可以让在这个上下文环境中的操作都在control_inputs 执行

# with g.control_dependencies([a, b, c]):
#   d = ...
#   e = ...
# `d` and `e` will only run after `a`, `b`, and `c` have executed.
with tf.control_dependencies([train_step]):
    train_step = tf.group(bn_updates)  # tf.group()组合训练

print("===  Loading Data ===")
mnist = input_data.read_data_sets(r"D:\QEL\Deep Learning\mnist", n_labeled=num_labeled, one_hot=True)

saver = tf.train.Saver()

print("===  Starting Session ===")
sess = tf.Session()

i_iter = 0

ckpt = tf.train.get_checkpoint_state('checkpoints/')  # get latest checkpoint (if any)
if ckpt and ckpt.model_checkpoint_path:
    # if checkpoint exists, restore the parameters and set epoch_n and i_iter
    saver.restore(sess, ckpt.model_checkpoint_path)
    epoch_n = int(ckpt.model_checkpoint_path.split('-')[1])
    i_iter = (epoch_n+1) * (num_examples/batch_size)
    print("Restored Epoch ", epoch_n)
else:
    # no checkpoint exists. create checkpoints directory if it does not exist.
    if not os.path.exists('checkpoints'):
        os.makedirs('checkpoints')
    init = tf.global_variables_initializer()
    sess.run(init)

print("=== Training ===")
print("Initial Accuracy: ", sess.run(accuracy, feed_dict={inputs: mnist.test.images, outputs: mnist.test.labels, training: False}), "%")

# tqdm进度条显示
for i in tqdm(range(int(i_iter), int(num_iter))):
    #这里images有200个,labels有100个
    images, labels = mnist.train.next_batch(batch_size)
    sess.run(train_step, feed_dict={inputs: images, outputs: labels, training: True})
    if (i > 1) and ((i+1) % (num_iter/num_epochs) == 0):
        epoch_n = i/(num_examples/batch_size)
        if (epoch_n+1) >= decay_after:
            # decay learning rate
            # learning_rate = starter_learning_rate * ((num_epochs - epoch_n) / (num_epochs - decay_after))
            ratio = 1.0 * (num_epochs - (epoch_n+1))  # epoch_n + 1 because learning rate is set for next epoch
            ratio = max(0, ratio / (num_epochs - decay_after))
            sess.run(learning_rate.assign(starter_learning_rate * ratio))
        saver.save(sess, 'checkpoints/model.ckpt', int(epoch_n))
        # print "Epoch ", epoch_n, ", Accuracy: ", sess.run(accuracy, feed_dict={inputs: mnist.test.images, outputs:mnist.test.labels, training: False}), "%"
        # with open('train_log', 'ab') as train_log:
        #     # write test accuracy to file "train_log"
        #     train_log_w = csv.writer(train_log)
        #     log_i = [epoch_n] + sess.run([accuracy], feed_dict={inputs: mnist.test.images, outputs: mnist.test.labels, training: False})
        #     train_log_w.writerow(log_i)

print("Final Accuracy: ", sess.run(accuracy, feed_dict={inputs: mnist.test.images, outputs: mnist.test.labels, training: False}), "%")

sess.close()

 input_data.py

"""Functions for downloading and reading MNIST data."""
from __future__ import print_function
import gzip
import os
import urllib.request

import numpy

SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'


def maybe_download(filename, work_directory):
  """Download the data from Yann's website, unless it's already here."""
  if not os.path.exists(work_directory):
    os.mkdir(work_directory)
  filepath = os.path.join(work_directory, filename)
  if not os.path.exists(filepath):
    # filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath)
    filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
    statinfo = os.stat(filepath)
    print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
  return filepath


def _read32(bytestream):
  dt = numpy.dtype(numpy.uint32).newbyteorder('>')
  return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]


def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data


def dense_to_one_hot(labels_dense, num_classes=10):
  """Convert class labels from scalars to one-hot vectors."""
  num_labels = labels_dense.shape[0]
  index_offset = numpy.arange(num_labels) * num_classes
  labels_one_hot = numpy.zeros((num_labels, num_classes))
  labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
  return labels_one_hot


def extract_labels(filename, one_hot=False):
  """Extract the labels into a 1D uint8 numpy array [index]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2049:
      raise ValueError(
          'Invalid magic number %d in MNIST label file: %s' %
          (magic, filename))
    num_items = _read32(bytestream)
    buf = bytestream.read(num_items)
    labels = numpy.frombuffer(buf, dtype=numpy.uint8)
    if one_hot:
      return dense_to_one_hot(labels)
    return labels


class DataSet(object):

  def __init__(self, images, labels, fake_data=False):
    if fake_data:
      self._num_examples = 10000
    else:
      assert images.shape[0] == labels.shape[0], (
          "images.shape: %s labels.shape: %s" % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      # Convert from [0, 255] -> [0.0, 1.0].
      images = images.astype(numpy.float32)
      images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0

  @property
  def images(self):
    return self._images

  @property
  def labels(self):
    return self._labels

  @property
  def num_examples(self):
    return self._num_examples

  @property
  def epochs_completed(self):
    return self._epochs_completed

  def next_batch(self, batch_size, fake_data=False):
    """Return the next `batch_size` examples from this data set."""
    if fake_data:
      fake_image = [1.0 for _ in xrange(784)]
      fake_label = 0
      return [fake_image for _ in xrange(batch_size)], [
          fake_label for _ in xrange(batch_size)]
    start = self._index_in_epoch
    self._index_in_epoch += batch_size
    if self._index_in_epoch > self._num_examples:
      # Finished epoch
      self._epochs_completed += 1
      # Shuffle the data
      perm = numpy.arange(self._num_examples)
      numpy.random.shuffle(perm)
      self._images = self._images[perm]
      self._labels = self._labels[perm]
      # Start next epoch
      start = 0
      self._index_in_epoch = batch_size
      assert batch_size <= self._num_examples
    end = self._index_in_epoch
    return self._images[start:end], self._labels[start:end]

class SemiDataSet(object):
    def __init__(self, images, labels, n_labeled):
        self.n_labeled = n_labeled

        # Unlabled DataSet
        self.unlabeled_ds = DataSet(images, labels)

        # Labeled DataSet
        self.num_examples = self.unlabeled_ds.num_examples
        indices = numpy.arange(self.num_examples)
        shuffled_indices = numpy.random.permutation(indices)
        images = images[shuffled_indices]
        labels = labels[shuffled_indices]
        y = numpy.array([numpy.arange(10)[l==1][0] for l in labels])
        idx = indices[y==0][:5]
        n_classes = y.max() + 1
        n_from_each_class = n_labeled / n_classes
        i_labeled = []
        for c in range(n_classes):
            i = indices[y==c][:int(n_from_each_class)]
            i_labeled += list(i)
        l_images = images[i_labeled]
        l_labels = labels[i_labeled]
        self.labeled_ds = DataSet(l_images, l_labels)

    def next_batch(self, batch_size):
        unlabeled_images, _ = self.unlabeled_ds.next_batch(batch_size)
        if batch_size > self.n_labeled:
            labeled_images, labels = self.labeled_ds.next_batch(self.n_labeled)
        else:
            labeled_images, labels = self.labeled_ds.next_batch(batch_size)
        images = numpy.vstack([labeled_images, unlabeled_images])
        return images, labels

def read_data_sets(train_dir, n_labeled = 100, fake_data=False, one_hot=False):
  class DataSets(object):
    pass
  data_sets = DataSets()

  if fake_data:
    data_sets.train = DataSet([], [], fake_data=True)
    data_sets.validation = DataSet([], [], fake_data=True)
    data_sets.test = DataSet([], [], fake_data=True)
    return data_sets

  TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
  TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
  TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
  TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
  VALIDATION_SIZE = 0

  local_file = maybe_download(TRAIN_IMAGES, train_dir)
  train_images = extract_images(local_file)

  local_file = maybe_download(TRAIN_LABELS, train_dir)
  train_labels = extract_labels(local_file, one_hot=one_hot)

  local_file = maybe_download(TEST_IMAGES, train_dir)
  test_images = extract_images(local_file)

  local_file = maybe_download(TEST_LABELS, train_dir)
  test_labels = extract_labels(local_file, one_hot=one_hot)

  validation_images = train_images[:VALIDATION_SIZE]
  validation_labels = train_labels[:VALIDATION_SIZE]
  train_images = train_images[VALIDATION_SIZE:]
  train_labels = train_labels[VALIDATION_SIZE:]

  data_sets.train = SemiDataSet(train_images, train_labels, n_labeled)
  data_sets.validation = DataSet(validation_images, validation_labels)
  data_sets.test = DataSet(test_images, test_labels)

  return data_sets

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值