Tensorflow笔记(3):搭建神经网络

本节课目标:搭建神经网络,总结搭建八股
3.1
一 、基本概念
√ 基于 w Tensorflow 的 的  NN : 用张量表示数据,用计算图搭建神经网络,用会话执
行计算图,优化线上的权重(参数),得到模型。
√ 张量:张量就是多维数组(列表),用“阶”表示张量的维度。
0 阶张量称作标量,表示一个单独的数;
举例 S=123
1 阶张量称作向量,表示一个一维数组;
举例 V=[1,2,3]
2 阶张量称作矩阵,表示一个二维数组,它可以有 i 行 j 列个元素,每个元素可
以用行号和列号共同索引到;
举例 m=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
判断张量是几阶的,就通过张量右边的方括号数,0 个是 0 阶,n 个是 n 阶,张
量可以表示 0 阶到 n 阶数组(列表);
举例 t=[ [ [… ] ] ]为 3 阶。
√ 数据类型:T Tw ensorflow  的数据类型有  tf.float32 、2 tf.int32  等。

举例
我们实现 Tensorflow 的加法:
import tensorflow as tf #引入模块
a = tf.constant([1.0, 2.0]) #定义一个张量等于[1.0,2.0]
b = tf.constant([3.0, 4.0]) #定义一个张量等于[3.0,4.0]
result = a+b #实现 a 加 b 的加法
print result #打印出结果
可以打印出这样一句话:Tensor(“add:0”, shape=(2, ), dtype=float32),

意思为 result 是一个名称为 add:0 的张量,shape=(2,)表示一维数组长度为 2,
dtype=float32 表示数据类型为浮点型。
√ 计算图( Graph ): 搭建神经网络的计算过程,是承载一个或多个计算节点的一张图,只搭建网络,不运算。
举例
在第一讲中我们曾提到过,神经网络的基本模型是神经元,神经元的基本模型其实就是数学中的乘、加运算。我们搭建如下的计算图:

x1、x2 表示输入,w1、w2 分别是 x1 到 y 和 x2 到 y 的权重,y=x1*w1+x2*w2。
我们实现上述计算图:
import tensorflow as tf #引入模块
x = tf.constant([[1.0, 2.0]]) #定义一个 2 阶张量等于[[1.0,2.0]]
w = tf.constant([[3.0], [4.0]]) #定义一个 2 阶张量等于[[3.0],[4.0]]
y = tf.matmul(x, w) #实现 xw 矩阵乘法
print y #打印出结果
可以打印出这样一句话:Tensor(“matmul:0”, shape(1,1), dtype=float32),从这里我们可以看出,print 的结果显示 y 是一个张量,只搭建承载计算过程的计算图,并没有运算,如果我们想得到运算结果就要用到“会话 Session()”了。

√ 会话( Session ): 执行计算图中的节点运算 。

我们用 w wh ith  结构实现,语法如下:
with tf.Session() as sess:
print sess.run(y y) )

举例
对于刚刚所述计算图,我们执行 Session()会话可得到矩阵相乘结果:
import tensorflow as tf #引入模块
x = tf.constant([[1.0, 2.0]]) #定义一个 2 阶张量等于[[1.0,2.0]]
w = tf.constant([[3.0], [4.0]]) #定义一个 2 阶张量等于[[3.0],[4.0]]
y = tf.matmul(x, w) #实现 xw 矩阵乘法
print y #打印出结果
with tf.Session() as sess:
     print sess.run(y) #执行会话并打印出执行后的结果
可以打印出这样的结果:
Tensor(“matmul:0”, shape(1,1), dtype=float32)
[[11.]] 

     我们可以看到,运行Session()会话前只打印出y是个张量的提示,运行Session()会话后打印出了 y 的结果 1.0*3.0 + 2.0*4.0 = 11.0。注 ①:我们以后会常用到 vim 编辑器,为了使用方便,我们可以更改 vim 的配置文件,使 vim 的使用更加便捷。我们在 vim ~/.vimrc 写入:set ts=4 表示使 Tab 键等效为 4 个空格set nu 表示使 vim 显示行号 nu 是 number 缩写
注②:在 vim 编辑器中运行 Session()会话时,有时会出现“提示 warning”,是因为有的电脑可以支持加速指令,但是运行代码时并没有启动这些指令。可以把这些“提示 warning”暂时屏蔽掉。屏蔽方法为进入主目录下的 bashrc 文件,在bashrc 文件中加入这样一句 export TF_CPP_MIN_LOG_LEVEL=2,从而把“提示warning”等级降低。
这个命令可以控制 python 程序显示提示信息的等级,在 Tensorflow 里面一般设置成是"0"(显示所有信息)或者"1"(不显示 info),"2"代表不显示 warning,"3"代表不显示 error。一般不建议设置成 3。source 命令用于重新执行修改的初始化文件,使之立即生效,而不必注销并重
新登录。

 

3.2
一、神经网络的参数
√ 神经网络的参数: 是指神经元线上的权重 w w , 用变量表示 , 一般会先随机生成
这些参数 。生成参数的方法 是 让w w 等于 tf.Variable ,把生成的方式写在括号里 。
神经网络中常用的生成随机数/ / 数组 的函数有:
tf.random_normal( ( ) 生成正态分布随机数
tf.truncated_normal() 生成去掉过大偏离点的正态分布随机数
tf.random_uniform() 生成均匀分布随机数
tf.zeros 表示生成全 0 0  数组
tf.ones 表示生成全 1 1  数组
tf.fill 表示生成全定值数组
tf.constant 表示生成直接给定值的数组
举例

举例
① w=tf.Variable(tf.random_normal([2,3],stddev=2, mean=0, seed=1)),表
示生成正态分布随机数,形状两行三列,标准差是 2,均值是 0,随机种子是 1。
② w=tf.Variable(tf.Truncated_normal([2,3],stddev=2, mean=0, seed=1)),
表示去掉偏离过大的正态分布,也就是如果随机出来的数据偏离平均值超过两个
标准差,这个数据将重新生成。
③ w=random_uniform(shape=7,minval=0,maxval=1,dtype=tf.int32,seed=1),
表示从一个均匀分布[minval maxval)中随机采样,注意定义域是左闭右开,即
包含 minval,不包含 maxval。

④ 除了生成随机数,还可以生成常量。tf.zeros([3,2],int32)表示生成
[[0,0],[0,0],[0,0]];tf.ones([3,2],int32)表示生成[[1,1],[1,1],[1,1];
tf.fill([3,2],6)表示生成[[6,6],[6,6],[6,6]];tf.constant([3,2,1])表示
生成[3,2,1]。
注意:①随机种子如果去掉每次生成的随机数将不一致。
②如果没有特殊要求标准差、均值、随机种子是可以不写的。

二 、 神经网络的搭建
当我们知道张量、计算图、会话和参数后,我们可以讨论神经网络的实现过程了。
√ 神经网络的实现过程 :
1 、准备数据集,提取特征,作为输入喂给神经网络( Neural Network , NN )
2  、搭建 N NN  结构,从输入到输出(先搭建计算图,再用会话执行)
( N NN  前向传播算法 计算输出)
3  、大量特征数据喂给  NN ,迭代优化 N NN  参数
( N NN  反向传播算法 优化参数训练模型 )
4 、使用训练好的模型预测和分类

由此可见,基于神经网络的机器学习主要分为两个过程,即训练过程和使用过程。
训练过程是第一步、第二步、第三步的循环迭代,使用过程是第四步,一旦参数
优化完成就可以固定这些参数,实现特定应用了。
很多实际应用中,我们会先使用现有的成熟网络结构,喂入新的数据,训练相应
模型,判断是否能对喂入的从未见过的新数据作出正确响应,再适当更改网络结
构,反复迭代,让机器自动训练参数找出最优结构和参数,以固定专用模型。

 

三、 前向传播
√ 前向传播就是搭建模型的计算过程, , 让模型具有推理能力, , 可以针对一组输入
给出相应的输出 。
举例
假如生产一批零件,体积为 x1,重量为 x2,体积和重量就是我们选择的特征,把它们喂入神经网络,当体积和重量这组数据走过神经网络后会得到一个输出。

假如输入的特征值是:体积 0.7 重量 0.5

由搭建的神经网络可得,隐藏层节点 a11=x1* w11+x2*w21=0.14+0.15=0.29,同
理算得节点 a12=0.32,a13=0.38,最终计算得到输出层 Y=-0.015,这便实现了
前向传播过程。
√ 推导 :
第一层
√X X  是输入为 2 1X2  矩阵用 x 表示输入,是一个 1 行 2 列矩阵,表示一次输入一组特征,这组特征包含了
体积和重量两个元素。
√ W W 前节点编号,后节点编号
( ( 层数) ) 为待优化的参数
对于第一层的 w 前面有两个节点,后面有三个节点 w 应该是个两行三列矩阵,
我们这样表示:

√层 神经网络共有几层 (或 当前是第几层网络) ) 都是指的计算层, , 输入不是计算层 ,所以 a a  为 第一层网络 ,a a  是一个一行三列矩阵 。

我们这样表示:

a(1)=[a11, a12, a13] =XW W

第二层
√ 参数要满足前面三个节点 , 后面一个节点 , 所以 W W
( (2 2) ) 是 三行一列矩阵 。
我们这样表示:

我们把每层输入乘以线上的权重 w,这样用矩阵乘法可以计算出输出 y 了。
a= tf.matmul(X, W1)
y= tf.matmul(a, W2)
由于需要计算结果,就要用 with 结构实现,所有变量初始化过程、计算过程都要放到 sess.run 函数中。对于变量初始化,我们在 sess.run 中写入tf.global_variables_initializer 实现对所有变量初始化,也就是赋初值。对于计算图中的运算,我们直接把运算节点填入 sess.run 即可,比如要计算输出y,直接写 sess.run(y) 即可。

在实际应用中,我们可以一次喂入一组或多组输入,让神经网络计算输出 y,可
以先用 tf.placeholder 给输入占位。如果一次喂一组数据 shape 的第一维位置
写 1,第二维位置看有几个输入特征;如果一次想喂多组数据,shape 的第一维
位置可以写 None 表示先空着,第二维位置写有几个输入特征。这样在 feed_dict
中可以喂入若干组体积重量了。

√ 前向传播过程的 的 w tensorflow  描述 :
√ 变量初始化、计算图节点运算都要用会话(h with  结构)实现
with tf.Session() as sess:
        sess.run()
√ 变量初始化:在 n sess.run  函数中用 tf.global_variables_initializer() 汇
总所有待优化变量。

init_op = tf.global _variables_initializer()
sess.run(init_op)

√ 计算图节点运算:在 n sess.run  函数中写入待运算的节点
sess.run(y)

√ 用 tf.placeholder  占位,在 sess.run  函数中用 t feed_dict  喂数据


喂一组数据:

x = tf.placeholder(tf.float32, shape=(1, 2))
sess.run(y, feed_dict={x: [[0.5,0.6]]})


喂多组数据:

x = tf.placeholder(tf .float32, shape=(None, 2))
sess.run(y, feed_dict={x: [[0.1,0.2],[0.2,0.3],[0.3,0.4],[0.4,0.5]]})
举例

举例
这是一个实现神经网络前向传播过程,网络可以自动推理出输出 y 的值。
①用 placeholder 实现输入定义(sess.run 中喂入一组数据)的情况
第一组喂体积 0.7、重量 0.5
#coding:utf-8
import tensorflow as tf
#定义输入和参数
x=tf.placeholder(tf.float32,shape=(1,2))
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
#定义前向传播过程
a=tf.matmul(x,w1)
y=tf.matmul(a,w2)
#用会话计算结果
with tf.Session() as sess:
         init_op=tf.global_variables_initializer()
         sess.run(init_op)
         print ”y in tf3_3.py is:\n”,sess.run(y,feed_dict={x:[[0.7,0.5]]})

②用 placeholder 实现输入定义(sess.run 中喂入多组数据)的情况第一组喂体积 0.7、重量 0.5,第二组喂体积 0.2、重量 0.3,第三组喂体积 0.3 、重量 0.4,第四组喂体积 0.4、重量 0.5.

#coding:utf-8
import tensorflow as tf
#定义输入和参数
x=tf.placeholder(tf.float32,shape=(None,2))
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
#定义前向传播过程
a=tf.matmul(x,w1)
y=tf.matmul(a,w2)
#用会话计算结果
with tf.Session() as sess:
         init_op=tf.global_variables_initializer()
         sess.run(init_op)
         print”y in tf3_4.py is:\n”,sess.run(y,feed_dict={x:[[0.7,0.5],
         [0.2,0.3],[0.3,0.4],[0.4,0.5]]})

 

3.3
一 、反向传播
√ 反向传播 :训练 模型参数 ,在所有参数上用梯度下降,使 N NN  模型在训练数据
上的损失函数最小。
√ 损失 函数(l l oss) ) : 计算 得到的 预测值 y y  与已知答案  y_ 的差距 。
损失函数的计算有很多方法,均方误差 MSE 是比较常用的方法之一。
√ 均方误差 M M SE : 求前向传播计算结果与已知答案之差的平方再求平均 。

用 用 w tensorflow  函数表示为 :
loss_mse = tf.reduce_mean(tf.square(y_ - - y))
√ 反向传播训练 方法: 以减小 s loss  值为优化目标 ,有 梯度下降 、m momentum  优化
器 、m adam  优化器等优化方法。
这三种优化方法用 tensorflow 的函数可以表示为:
train_step=tf.train .GradientDescentOptimizer(learning_rate).minimize(loss)
train_step=tf.train.MomentumOptimizer(learning_rate, momentum).minimize(loss)
train_step=tf.train.AdamOptimizer(learning_rate).minimize(loss)
三种优化方法区别如下:

①tf.train.GradientDescentOptimizer()使用随机梯度下降算法,使参数沿着
梯度的反方向,即总损失减小的方向移动,实现更新参数。

参数更新公式是

其中,?(?)为损失函数,?为参数,?为学习率。
②tf.train.MomentumOptimizer()在更新参数时,利用了超参数,参数更新公式

其中,?为学习率,超参数为?,?为参数,?(? ?−1 )为损失函数的梯度。
③tf.train.AdamOptimizer()是利用自适应学习率的优化算法,Adam 算法和随机梯度下降算法不同。随机梯度下降算法保持单一的学习率更新所有的参数,学习率在训练过程中并不会改变。而 Adam 算法通过计算梯度的一阶矩估计和二
阶矩估计而为不同的参数设计独立的自适应性学习率。

√ 学习率: 决定 每次参数更新的幅度。
优化器中都需要一个叫做学习率的参数,使用时,如果学习率选择过大会出现震荡不收敛的情况,如果学习率选择过小,会出现收敛速度慢的情况。我们可以选个比较小的值填入,比如 0.01、0.001。
进阶 :反向传播参数更新推导过程
符号说明:

 

二 、 搭建神经网络的八股
我们最后梳理出神经网络搭建的八股,神经网络的搭建课分四步完成:准备工作、
前向传播、反向传播和循环迭代。
√ 0. 导入模块,生成模拟数据集;
         import
        常量定义
       生成数据集
√1 . . 前向传播:定义输入、参数和输出
                           x=           y_=
                           w1=        w2=
                           a=           y=
√2 . . 反向传播:定义损失函数、反向传播方法
                               loss=
                               train_step=

√3 3. . 生成会话,训练 S STEPS  轮
with tf.session() as sess
        Init_op=tf. global_variables_init ializer()
        sess_run(init_op)
        STEPS=3000
        for i in range(STEPS):
             start=
             end=
             sess.run(train_step, feed_dict:)

举例
随机产生 32 组生产出的零件的体积和重量,训练 3000 轮,每 500 轮输出一次损
失函数。下面我们通过源代码进一步理解神经网络的实现过程:

0.导入模块,生成模拟数据集;

1.定义神经网络的输入、参数和输出,定义前向传播过程;

2. 定义损失函数及反向传播方法

3.生成会话,训练 STEPS 轮

由神经网络的实现结果,我们可以看出,总共训练 3000 轮,每轮从 X 的数据集和 Y 的标签中抽取相对应的从 start 开始到 end 结束个特征值和标签,喂入神经网络,用 sess.run 求出 loss,每 500 轮打印一次 loss 值。经过 3000 轮后,我们打印出最终训练好的参数 w1、w2。

这样四步就可以实现神经网络的搭建了。

 

 

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿6先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值