第九章第二节(拓扑排序)

拓扑排序:是对有向无圈图的顶点的一种排序。它使得如果存在一条从vi到vj的路径,那么vi在排序中必须在vj的前面。

思路:一个简单的求拓扑排序的算法是先找出任意一个没有入边的顶点,然后我们显示出该顶点,并将它和它的边一起从图中删除。对图的其余部分应用同样的方法处理。

实现过程:把顶点v的入度(indegree)定义为边(u,v)的条数,计算图中所有顶点的入度,记录在Indegree数组中。
建立队列,扫描该数组,将入度为0的顶点,入队列。
当队列不为空的时候,删除队列中的顶点v,同时删除顶点v到其它顶点的边,并将其它顶点的入度减1,
如果入度减1后,为0,则加入队列,重复以上过程,直到队列为空。

void topSort(Graph G,int TopOrder[]) {
	//G为图,TopOrder为记录排序的数组
	linkQueue Q;					//创建队列
	ptrNode p;						
	int Indegree[MAXVERTEX];		//记录入度个数的数组
	int cut = 0;					//记录已排序顶点的个数
	int i;

	Q = createQueue();				//创建队列
	//初始化记录入度节点
	for (i = 0; i < G->Nv; i++)
	{
		Indegree[i] = 0;	
	}
	//计算各个顶点入度的个数
	for (i = 0; i < G->Nv; i++) {		
		for (p = G->G[i].first; p; p = p->next) {
			Indegree[p->v]++;
		}
	}

	for (i = 0; i < G->Nv; i++) {
		//将入度为0的顶点加入队列
		if (Indegree[i] == 0) {
			EeueueQueue(i, Q);
		}
	}
	while (!IsEmpty(Q)) {
		i = frontAndDeueue(Q);		//出队列并获取队列的首元素
		for (p = G->G[i].first; p; p = p->next) {
			//将与该顶点邻接的入度减1;
			--Indegree[p->v];
			if (Indegree[p->v]==0) {
				EeueueQueue(p->v, Q);
			}
		}
		TopOrder[cut++] = i;
	}
	if (cut==G->Nv) {
		printf("拓扑排序成功\n");
		for (i = 0; i < cut; i++)
			printf("%d ", TopOrder[i]);
	}
	else {
		printf("存在回路,拓扑排序失败\n");
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值