初识NLP在智能客服中的应用

本文详述了智能客服领域语料准备的重要性,包括数据来源、清洗与预处理流程,以及知识库构建、问答系统设计与数据运营的闭环优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

语料准备:

智能客服语料在实际生产,语料一般是需要自己爬取,或者垂直领域的语料由客户提供的,这些数据都是需要清洗、预处理的。

智能客服中一般工作中的语料准备:

1)智能客服领域服务的客户主要涉及领域一般是垂直领域,包括银行、证券、保险、汽车和零售等;

2)语料主要是客户客服部门的日志及电话录音;比如对于银行行业的信用卡业务中掌上生活的智能客服,里面的语料积累就是通过人工客服得到的;再比如拨打10086查询话费时的电话录音,银行电话办理信用卡的录音等,都可以转为文本作为语料问答对;

3)数据清洗步骤:

       a) 先将客户的log整理成符合数据分析平台格式的文件 --- analysis_file ;

       b)  将analysis_file上传到数据分析平台(一般进行统计、聚类等分析及可视化、按类别划分等), 人工分析结果, 编写标准问答对, 再请客户确认标准问 ;

       c)  然后对标准问进行语料扩写,形成相似问列表, 并将相似问结果发给客户确认 ;

       b-c 在知识库构建过程中是不断重复迭代进行的。

一般对话是搜索式的,生成式的一般应用于闲聊、寒暄等。现行业大多数用的搜索式的(搜索+深度学习)。小艾实现主要是rule_based的,小度(搜索+深度学习的),其架构模型肯定是业界领先的。

对于检索匹配容易出现的问题:比如有这三种情况:1)结婚10年了;2)我去年结的婚;3)接了20年婚了。

这里需要主要1.看语块的组成形式    2.给语块构建规则 (例如:结+时间段+婚)

 

NLP中文数据语料链接

 

智能客服(对话)系统主要分为三部分:

1、知识库的构建

2、问答系统的构建

3、上线后的数据运营

具体如下图所示:

将这三部分连接形成一个闭环,不断进行迭代优化。

1、知识库的构建:分为单轮对话和多轮对话(目前主要是任务驱动的)

单轮对话:

FAQ:FAQ知识库。比如question:我买股票的手续费是多少? answer:有印花税、购入成本等等

寒暄:例如你好啊! 今天天气怎么样?

知识图谱:可能特殊一点,是实体属性链接关系。

多轮对话:比如你打电话给美团点评订餐,

A:我今天要预定位置

B:你们多少人?

A:我们一共三个人

B:现在客满,没有位置了

A:那需要等多久

B:您确定要等吗?

A:OK,大概等半个小时

B:行,那好,我帮您下单了。

当然这里主要涉及用户输入问题的意图识别,怎么进行意图分类的问题(可以理解为文本分类)。当用户输入一个问题,需要判断是寒暄还是知识图谱模块,或者FAQ模块,如果都不在这些模块中,则推荐几个相似的问题。

比如,A:我想买保险   B:您是想买财产险还是车险还是健康险呢? A:我想买健康险。

实际上这也是一种单轮对话。

在单轮对话种一般都是question与question进行匹配的 ,进而得到最佳question对应的answer,这种qq匹配泛化能力较好。因为如果采用QA匹配,难度较大,准确度低,难以应用;另一个就是answer随着时间、政策是不断变化的。

多轮对话是应用场景驱动的:主要涉及会话管理、槽位填充。

2、问答系统构建:主要分为matching,ranking

matching:主要是做一个召回,进行粗排序。

ranking:对matching找回的数据进行精排序,得到top1,并返回结果。

3、上线后的数据运营

a) 用户query的采集,主要是通过日志采集;

b) 用户query的数据分析;

c) 歧义分析和拒识分析;

d) 新query的发现。

e) ……

将这三部分连接形成一个闭环,不断进行迭代优化。

 

 

 

<think>嗯,用户想了解人工智能的基础知识,需要入门介绍。首先,我得确定用户的基础水平,但问题里没有明确说明,可能是个零基础的学习者。所以要从最基础的概念讲起。 根据引用[1],人工智能是模拟人类智能的科学技术,包括学习、推理和自我修正。这部分可以作为定义部分,先解释清楚什么是AI。然后需要分几个主要部分来介绍,比如核心概念、分支领域、学习路径和应用场景。 接下来,引用[4]提到机器学习算法和深度学习框架是基础,可能需要强调这些技术的重要性。同时,引用[3]给出了一些学习资源,比如在线平台和社区,这部分可以作为学习路径的建议,帮助用户进一步学习。 用户可能对如何开始学习AI感兴趣,所以需要列出学习路径,比如数学基础、编程语言、机器学习基础等步骤。引用[2]提到了大模型如GPT-3、BERT,可以介绍当前热门的应用,比如自然语言处理和计算机视觉。 还要注意用户可能不知道需要哪些前置知识,比如数学中的线性代数、概率论,编程中的Python。这些都需要在回答中提及,确保用户有明确的学习方向。 另外,生成的相关问题要覆盖用户可能有的后续疑问,比如数学要求、编程语言选择、应用领域等,这样能帮助他们继续深入学习。需要确保每个部分结构清晰,用简单的语言解释概念,避免过于专业术语,让入门者容易理解。 最后,检查是否符合格式要求,数学公式用$...$,独立公式用$$...$$,确保引用正确添加,比如在定义部分加上[^1],学习路径引用[^2]和[^3]。代码示例可能需要展示一个简单的机器学习代码,比如线性回归,但用户问题中没有明确是否需要代码,但根据示例中的快速排序,可能可以加入一个简单的示例,比如使用Python的scikit-learn库做一个分类任务,这样更直观。 总结下来,回答的结构应该是:定义、核心概念、分支领域、学习路径、应用场景、学习建议和相关问题。确保每个部分简短明了,重点突出,帮助用户构建完整的知识框架。</think>### 人工智能入门介绍 #### 1. 人工智能的定义 人工智能(Artificial Intelligence, AI)是研究如何使机器模拟人类智能的科学技术,涵盖学习(从数据中获取规则)、推理(基于规则推导结论)和自主修正等能力[^1]。其核心目标是构建能够执行复杂任务的智能系统,例如图像识别、自然语言处理等。 #### 2. 核心概念 - **机器学习(Machine Learning)**:通过算法让机器从数据中学习规律,典型方法包括监督学习(如分类、回归)和无监督学习(如聚类)。 - **深度学习(Deep Learning)**:基于多层神经网络的机器学习方法,擅长处理图像、语音等高维数据,典型模型如卷积神经网络(CNN)和循环神经网络(RNN)[^4]。 - **大模型(Large Language Models)**:如GPT-3、BERT等,通过海量数据预训练实现文本生成和理解能力[^2]。 #### 3. 主要分支领域 | 领域 | 典型应用场景 | |--------------------|---------------------------| | 自然语言处理(NLP)| 机器翻译、聊天机器人 | | 计算机视觉(CV) | 人脸识别、自动驾驶 | | 强化学习(RL) | 游戏AI、机器人控制 | #### 4. 学习路径建议 1. **数学基础**:掌握线性代数(矩阵运算)、概率论(贝叶斯定理)和微积分(梯度计算)。 2. **编程语言**:Python为主,需熟悉NumPy、Pandas等库,例如: ```python # 简单线性回归示例 from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train) ``` 3. **机器学习基础**:从经典算法(如决策树、SVM)过渡到深度学习框架(如PyTorch、TensorFlow)。 #### 5. 应用场景与技术关系 $$ \text{AI系统} = \text{数据} + \text{算法} + \text{算力} $$ 例如,人脸识别系统需要标注图像数据(数据)、CNN模型(算法)和GPU加速(算力)[^4]。 #### 6. 学习资源推荐 - **理论入门**:吴恩达《机器学习》课程 - **实践平台**:Kaggle竞赛、Google Colab - **动态追踪**:Wired科技专栏[^3]、arXiv论文预印本平台
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Steven灬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值