向量数据库,专门为向量检索设计的中间件。
个人觉得做LLM应用开发,前期可以选择chromdb,后期选择Milvus.
**
Milvus比较适合我的业务场景,向量数据管理和搜索。
向量数据库是一种专门用于存储、检索和处理高维向量数据的数据库,广泛应用于搜索、推荐系统、自然语言处理等领域。以下是一些常见的向量数据库及其对比:
常见向量数据库
-
FAISS (Facebook AI Similarity Search)
- 开发者:Facebook AI Research
- 特点:
- 高效的相似性搜索和聚类
- 支持大规模数据集(数十亿向量)
- 多种索引类型,如平面索引、树索引、量化索引等
- 多GPU支持
- 适用场景:需要高性能和低延迟的大规模相似性搜索,如图像搜索、推荐系统。
-
Annoy (Approximate Nearest Neighbors Oh Yeah)
- 开发者:Spotify
- 特点:
- 基于随机树的近似最近邻搜索
- 高效的内存使用
- 适用于读取多于写入的场景
- 无需额外依赖,轻量级
- 适用场景:推荐系统、音频分析。