基于全局位置信息的目标横穿行为检测

当然, 这是在拿到全量时序信息的情况下进行后验分析.

一 核心检测方法

1. 坐标系转换与相对运动分析

  • 全局坐标转自车坐标系
    基于自车全局位置 ( x e g o , y e g o ) (x_{ego}, y_{ego}) (xego,yego)和航向角 θ e g o \theta_{ego} θego, 计算目标车相对坐标:

    d_lat = (x_target - x_ego) * sin(theta_ego) - (y_target - y_ego) * cos(theta_ego)
    d_lon = (x_target - x_ego) * cos(theta_ego) + (y_target - y_ego) * sin(theta_ego)
    
  • 运动特征提取
    计算目标车横向速度 v l a t = Δ d l a t / Δ t v_{lat} = \Delta d_{lat}/\Delta t vlat=Δdlatt和纵向速度 v l o n = Δ d l o n / Δ t v_{lon} = \Delta d_{lon}/\Delta t vlon=Δdlont.

2. 横穿行为判定逻辑

需同时满足以下条件:

  • 路径交叉: 目标车轨迹与自车历史/预测轨迹存在物理交点 (使用Shapely库检测线段相交)
  • 运动方向冲突
    • 横向速度方向突变: v l a t v_{lat} vlat从正变负或负变正 (相对自车坐标系)
    • 航向角差异: ∣ θ t a r g e t − θ e g o ∣ > 30 ° |\theta_{target} - \theta_{ego}| > 30° θtargetθego>30° (非平行运动)
  • 碰撞风险量化
    • 碰撞时间(TTC): T T C = d l o n / ( v r e l + ϵ ) TTC = d_{lon}/(v_{rel} + \epsilon) TTC=dlon/(vrel+ϵ), 阈值设为3秒
    • 横向侵入速度: ∣ v l a t ∣ > 0.5 m / s |v_{lat}| > 0.5m/s vlat>0.5m/s (可调参数)

二 特殊情况处理方案

1. 数据质量问题

问题类型解决方案
轨迹缺失三次样条插值 (Cubic Spline) 补全数据, 保证二阶导数连续
定位噪声RTS平滑器后处理, 状态量包含位置, 速度, 加速度
采样率差异动态时间规整(DTW)对齐时间序列, 解决异步采样问题

代码示例: 轨迹插值与平滑

from scipy.interpolate import CubicSpline
from pykalman import KalmanFilter

# 轨迹插值
cs = CubicSpline(known_times, known_positions)
filled_pos = cs(missing_times)

# 卡尔曼平滑
kf = KalmanFilter(transition_matrices=np.eye(6), observation_matrices=H)
smoothed_states, _ = kf.smooth(noisy_measurements)

2. 复杂道路场景

场景类型处理方法
交叉路口结合高精地图拓扑关系, 验证横穿是否发生在合法车道连接区域
环岛/弯道极坐标变换分析径向运动, 检测切向速度突变 ( ∣ Δ v θ ∣ > 1 m / s 2 |Δv_\theta| > 1m/s^2 ∣Δvθ>1m/s2)
多车道横穿多段轨迹相交检测, 优先关注跨越自车所在车道的区段

几何分析方法:

from shapely.geometry import LineString

ego_path = LineString(ego_trajectory)
target_path = LineString(target_trajectory)
cross_point = ego_path.intersection(target_path)
is_crossing = not cross_point.is_empty

3. 目标行为异常

异常类型检测逻辑
静止目标突穿加速度突变检测: d 2 x d t 2 > 3 m / s 2 \frac{d^2x}{dt^2} > 3m/s² dt2d2x>3m/s2 且方向垂直自车路径
短暂轨迹中断匈牙利算法关联轨迹片段, 匹配条件: 速度连续+位置外推一致性
群体横穿DBSCAN聚类 (eps=5m) 识别车队, 整体凸包与自车路径相交即告警

4. 环境干扰应对

干扰源补偿方案
坐标系漂移位姿图优化(Pose Graph Optimization)消除累积误差
恶劣天气影响动态协方差膨胀: 定位误差协方差矩阵扩大2-3倍
传感器异步时间戳对齐补偿 (线性插值法) , 最大容忍延迟150ms

三 关键实现细节

1. 计算优化

预计算所有轨迹对的相交性, 使用向量化运算加速查询

2. 可视化调试

绘制时空三维图 (X-Y-Time) 展示轨迹交互过程

3. 贝叶斯参数优化

联合优化TTC阈值, 横向速度阈值等参数:

from skopt import BayesSearchCV
opt = BayesSearchCV(
  estimator=Detector(),
  search_spaces={'ttc_thresh': (1.0,5.0), 'lat_speed_thresh': (0.3,2.0)},
  n_iter=50
)
opt.fit(dataset)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

t.y.Tang

感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值