当然, 这是在拿到全量时序信息的情况下进行后验分析.
文章目录
一 核心检测方法
1. 坐标系转换与相对运动分析
-
全局坐标转自车坐标系
基于自车全局位置 ( x e g o , y e g o ) (x_{ego}, y_{ego}) (xego,yego)和航向角 θ e g o \theta_{ego} θego, 计算目标车相对坐标:d_lat = (x_target - x_ego) * sin(theta_ego) - (y_target - y_ego) * cos(theta_ego) d_lon = (x_target - x_ego) * cos(theta_ego) + (y_target - y_ego) * sin(theta_ego) -
运动特征提取
计算目标车横向速度 v l a t = Δ d l a t / Δ t v_{lat} = \Delta d_{lat}/\Delta t vlat=Δdlat/Δt和纵向速度 v l o n = Δ d l o n / Δ t v_{lon} = \Delta d_{lon}/\Delta t vlon=Δdlon/Δt.
2. 横穿行为判定逻辑
需同时满足以下条件:
- 路径交叉: 目标车轨迹与自车历史/预测轨迹存在物理交点 (使用Shapely库检测线段相交)
- 运动方向冲突
- 横向速度方向突变: v l a t v_{lat} vlat从正变负或负变正 (相对自车坐标系)
- 航向角差异: ∣ θ t a r g e t − θ e g o ∣ > 30 ° |\theta_{target} - \theta_{ego}| > 30° ∣θtarget−θego∣>30° (非平行运动)
- 碰撞风险量化
- 碰撞时间(TTC): T T C = d l o n / ( v r e l + ϵ ) TTC = d_{lon}/(v_{rel} + \epsilon) TTC=dlon/(vrel+ϵ), 阈值设为3秒
- 横向侵入速度: ∣ v l a t ∣ > 0.5 m / s |v_{lat}| > 0.5m/s ∣vlat∣>0.5m/s (可调参数)
二 特殊情况处理方案
1. 数据质量问题
| 问题类型 | 解决方案 |
|---|---|
| 轨迹缺失 | 三次样条插值 (Cubic Spline) 补全数据, 保证二阶导数连续 |
| 定位噪声 | RTS平滑器后处理, 状态量包含位置, 速度, 加速度 |
| 采样率差异 | 动态时间规整(DTW)对齐时间序列, 解决异步采样问题 |
代码示例: 轨迹插值与平滑
from scipy.interpolate import CubicSpline
from pykalman import KalmanFilter
# 轨迹插值
cs = CubicSpline(known_times, known_positions)
filled_pos = cs(missing_times)
# 卡尔曼平滑
kf = KalmanFilter(transition_matrices=np.eye(6), observation_matrices=H)
smoothed_states, _ = kf.smooth(noisy_measurements)
2. 复杂道路场景
| 场景类型 | 处理方法 |
|---|---|
| 交叉路口 | 结合高精地图拓扑关系, 验证横穿是否发生在合法车道连接区域 |
| 环岛/弯道 | 极坐标变换分析径向运动, 检测切向速度突变 ( ∣ Δ v θ ∣ > 1 m / s 2 |Δv_\theta| > 1m/s^2 ∣Δvθ∣>1m/s2) |
| 多车道横穿 | 多段轨迹相交检测, 优先关注跨越自车所在车道的区段 |
几何分析方法:
from shapely.geometry import LineString
ego_path = LineString(ego_trajectory)
target_path = LineString(target_trajectory)
cross_point = ego_path.intersection(target_path)
is_crossing = not cross_point.is_empty
3. 目标行为异常
| 异常类型 | 检测逻辑 |
|---|---|
| 静止目标突穿 | 加速度突变检测: d 2 x d t 2 > 3 m / s 2 \frac{d^2x}{dt^2} > 3m/s² dt2d2x>3m/s2 且方向垂直自车路径 |
| 短暂轨迹中断 | 匈牙利算法关联轨迹片段, 匹配条件: 速度连续+位置外推一致性 |
| 群体横穿 | DBSCAN聚类 (eps=5m) 识别车队, 整体凸包与自车路径相交即告警 |
4. 环境干扰应对
| 干扰源 | 补偿方案 |
|---|---|
| 坐标系漂移 | 位姿图优化(Pose Graph Optimization)消除累积误差 |
| 恶劣天气影响 | 动态协方差膨胀: 定位误差协方差矩阵扩大2-3倍 |
| 传感器异步 | 时间戳对齐补偿 (线性插值法) , 最大容忍延迟150ms |
三 关键实现细节
1. 计算优化
预计算所有轨迹对的相交性, 使用向量化运算加速查询
2. 可视化调试
绘制时空三维图 (X-Y-Time) 展示轨迹交互过程
3. 贝叶斯参数优化
联合优化TTC阈值, 横向速度阈值等参数:
from skopt import BayesSearchCV
opt = BayesSearchCV(
estimator=Detector(),
search_spaces={'ttc_thresh': (1.0,5.0), 'lat_speed_thresh': (0.3,2.0)},
n_iter=50
)
opt.fit(dataset)
734

被折叠的 条评论
为什么被折叠?



