七、ResNeXt论文总结

七、ResNeXt

论文导读

文章标题:深度神经网络中的残差聚合变换;

意义:提炼split-transform-merge思想;提炼block堆叠思想;引入cardinality指标,为CNN模型提供新的思路;

Split-Transform-Merge思想:实际上是Inception模块背后的思想,表示分发—变换—合并的过程;

论文概要

全文概括:提出一个简洁且高度可调的神经网络结构,该网络通过反复堆叠Building Block实现;

优点:该网络具有相同的、多分支的结构,并且对应的超参数非常少;

方法:提出一个与网络宽度和深度类似作用的参数,用来衡量网络大小,称之为Cardinality(基数);

1、ResNet与ResNeXt的Building block对比:

在这里插入图片描述

结论:由图可以看出,ResNeXt就是采用了多分支,并且每个分支是相同的结构;

2、聚合变换(Aggregated transformations)

一个神经元的操作:

Spliting:X分解为D个元素,可理解为低维嵌入(1x1卷积);

Tramsforming:每个元素进行变换,做一些卷积操作;

Aggregating:对D个变换后的结果进行聚合;

3、卷积结构的优化过程:

在这里插入图片描述

最终采用C方式的分组卷积结构;

4、分组卷积

最早在AlexNet中使用,实现是将输入的特征图分为C组,每组内部进行正常的卷积,然后按通道拼接,得到输出特征图;

优点:用更少的参数得到相同的特征图,网络学习到不同的特征,获取更丰富信息;

当分组数与通道数相等的时候,就叫做逐通道卷积,参数量减少的最多,轻量化网络中常见;

论文总结

  • 关键点

提炼VGG、ResNet和Inception系列优秀思想:

1、处理相同尺寸的特征图时,采用同样大小、数量的卷积核;

2、特征图分辨率长宽降低2倍时,特征图通道数翻倍;

3、block中各分支采用相同结构,演化成分组卷积;

提出Cardinality来衡量模型复杂度,实验表明cardinality比模型深度、宽度更高效;

  • 启发点

1、相同结构的block进行堆叠,可减少过度适应的风险,侧面反映出Incepotion系列模型泛化性能可能较差(目前用的少);

2、参数少不一定训练速度快,要参考硬件对OP的支持情况;

3、ResNeXt比ResNet的方差大,所以需要在更大的数据集上进行训练;

4、分组卷积的优点:

  • 减少参数量,分组卷积可减少参数至1/G,G为分组数;
  • 组卷积可以看成是正常卷积的稀疏结构,即与其他组特征图相连接的权重为0,可视为一种正则;
  • 极限组卷及—Depth-Wise Convolution,逐通道卷积可进一步减少参数量;

论文代码

分组卷积的实现,只需要在卷积层参数中增加一个groups的参数

self.conv2 = conv3x3(width, width, stride, groups, dilation)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值