回归分类问题中数据特征的处理方法总结及代码实现

                                                    回归分类等问题中数据预处理方法总结及相关代码实现

                                                                                   ------------------------------------(总结及概括)

在进行训练和拟合模型的过程中,由于某些数据特征差别较大,其最终拟合出的效果并不是很好,比如通过一个人的身高体重等特征因素去预测某个人的特性。因为身高和体重是不同的衡量单位,所以我们在进行相关模型的拟合或者回归的时候,其结果并不是很好。那么我们如何能进一步的提升模型的准确率呢。今天,我们从数据预处理的角度进行阐述一些现实项目中的处理方法。

1、线性归一化(Min-Max scaling)

该方法通过线性变化对原始数据进行等比例缩放映射到[0,1]之间,其中X*为归一化后的数据,X为原始数据,Xmin和Xmax分别为X向量的最小值和最大值。

Python代码实现:

def MaxMinNormalization(x,Max,Min):

    x = (x - Min) / (Max - Min);

return x

2、0均值标准化(Z-score standardization)

该方法将原始数据归一化为均值为0、方差为1的数据集,且该数据集符合标准的高斯分布,其中X*为归一化后的数据,X为原始数据,μ为X向量的均值,σ为X向量的标准差。

Python代码实现:

def Z_ScoreNormalization(x,x_ave,sigma):

    x = (x - x_ave) / sigma;

    return x

3、Sigmoid函数(当然也可以使用其的函数进行预处理特征值较大的数据值)

Sigmoid函数是一个具有S形曲线的函数,是良好的阈值函数,在(0, 0.5)处中心对称,在(0, 0.5)附近有比较大的斜率,而当数据趋向于正无穷和负无穷的时候,映射出来的值就会无限趋向于1和0,是个人非常喜欢的“归一化方法”,之所以打引号是因为我觉得Sigmoid函数在阈值分割上也有很不错的表现,根据公式的改变,就可以改变分割阈值,这里作为归一化方法,我们只考虑(0, 0.5)作为分割阈值的点的情况:

Python代码实现:

def sigmoid(X,useStatus):

    if useStatus:

        return 1.0 / (1 + np.exp(-float(X)));

    else:

        return float(X)

 

4、特征二值化(Binarization)

给定阈值,将特征转换为0/1调用sklearn库进行库函数的应用。

binarizer = sklearn.preprocessing.Binarizer(threshold=1.1)

binarizer.transform(X)

数据进行归一化和特征化的好处:使得预处理的数据被限定在一定的范围  消除奇异样本数据导致的不良影响  同时,针对归一化的特征数据进行训练模型时可以加快梯度下降的求解速度。

数据处理说明:

SVM、线性回归之类的最优化问题需要归一化,是否归一化主要在于是否关心变量取值;而在进行神经网络模型进行训练的时候需要标准化处理,一般变量的取值在-1到1之间,这样做是为了弱化某些变量的值较大而对模型产生影响。一般神经网络中的隐藏层采用tanh激活函数比sigmod激活函数要好些,因为tanh双曲正切函数的取值[-1,1]之间,均值为0;在K近邻算法中,如果不对解释变量进行标准化,那么具有小数量级的解释变量的影响就会微乎其微。

注意:没有一种数据标准化的方法,放在每一个问题,放在每一个模型,都能提高算法精度和加快算法的收敛速度。所以对于不同的问题可能会有不同的归一化方法。在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,Z-score standardization表现更好。联系交流QQ:525894654;所以大家在调试模型的时候,尽可能的去尝试不同的数据处理方法及模型的有效结合。

Python是一种非常流行的编程语言,尤其在数据处理和深度学习领域应用广泛。在本文,我们将介绍Python的一些常用数据处理方法和深度学习技术,并提供代码示例。 数据处理方法 1. 数据清洗 数据清洗是指将原始数据转换为可用于分析和建模的数据数据清洗通常包括以下几个方面: - 缺失值处理:删除或填充缺失值 - 异常值处理:检测和处理异常值 - 数据类型转换:将数据转换为适合分析的类型 - 去重处理:删除重复行或列 以下是一个简单的数据清洗示例,其我们使用Pandas库来处理数据: ```python import pandas as pd # 读取数据 df = pd.read_csv('data.csv') # 删除缺失值 df.dropna(inplace=True) # 检测和处理异常值 df = df[df['age'] > 0] # 数据类型转换 df['age'] = df['age'].astype(int) # 删除重复行 df.drop_duplicates(inplace=True) # 保存清洗后的数据 df.to_csv('cleaned_data.csv', index=False) ``` 2. 特征工程 特征工程是指从原始数据提取有用的特征来描述数据特征工程通常包括以下几个方面: - 特征选择:选择最相关的特征 - 特征提取:从原始数据提取有用的特征 - 特征转换:将特征转换为适合分析的形式 以下是一个简单的特征工程示例,其我们使用Scikit-learn库来处理数据: ```python import pandas as pd from sklearn.feature_selection import SelectKBest, f_classif # 读取数据 df = pd.read_csv('data.csv') # 特征选择 X = df.drop('label', axis=1) y = df['label'] selector = SelectKBest(score_func=f_classif, k=10) X_new = selector.fit_transform(X, y) # 特征提取 from sklearn.decomposition import PCA pca = PCA(n_components=2) X_new = pca.fit_transform(X) # 特征转换 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_new = scaler.fit_transform(X) ``` 深度学习技术 1. 神经网络 神经网络是一种模仿生物神经网络工作方式的计算模型,通常用于分类回归等任务。以下是一个简单的神经网络示例,其我们使用Keras库来构建神经网络: ```python import numpy as np import keras from keras.models import Sequential from keras.layers import Dense # 生成数据 X = np.random.rand(1000, 10) y = np.random.randint(0, 2, size=(1000, 1)) # 构建神经网络 model = Sequential() model.add(Dense(32, activation='relu', input_dim=10)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # 训练神经网络 model.fit(X, y, epochs=10, batch_size=32) # 预测新数据 X_new = np.random.rand(10) y_pred = model.predict(X_new.reshape(1, -1)) ``` 2. 卷积神经网络 卷积神经网络是一种特殊的神经网络,通常用于图像识别和语音识别等任务。以下是一个简单的卷积神经网络示例,其我们使用Keras库来构建卷积神经网络: ```python import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten # 生成数据 X = np.random.rand(1000, 28, 28, 1) y = np.random.randint(0, 10, size=(1000, 1)) # 构建卷积神经网络 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 训练卷积神经网络 y_one_hot = keras.utils.to_categorical(y, 10) model.fit(X, y_one_hot, epochs=10, batch_size=32) # 预测新数据 X_new = np.random.rand(28, 28, 1) y_pred = model.predict(X_new.reshape(1, 28, 28, 1)) ``` 总结 本文介绍了Python常用的数据处理方法和深度学习技术,并提供了相应的代码示例。这些技术可以帮助您更好地处理和分析数据,以及构建更准确和有效的深度学习模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

就是求关注

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值