论文学习笔记:通用对抗扰动UAP

给定一个state-of-the-art的深度神经网络分类器,作者的工作展示了通用对抗扰动(UAP)的存在性,并且提出了计算UAP的方法。经验型的解释了这种扰动,展示了UAP在不同神经网络之间的泛华性。UAP的存在揭示了高维决策边界之间存在重要的几何相关性。进一步概述了现有自然图像分类器存在安全漏洞。
在这里插入图片描述

UAP

假设图片 x ∈ R d x \in \mathbb{R}^d xRd来自分布 μ \mu μ,注意,这里的 μ \mu μ分布,代表了大部分的自然图片,包含较强的多样性。在这样的情况下,我们要找到通用对抗扰动 v v v,需要 v v v满足一下两个条件。
在这里插入图片描述
其中, ξ \xi ξ表示扰动的幅度, δ \delta δ表示对分类模型 k ^ \hat{k} k^的愚弄率。

在这里插入图片描述
对于来自 μ \mu μ分布的图像数据点 X X X,作者提出了在数据集上迭代,逐步创建通用对抗扰动 v v v的方法,在每次迭代计算中,计算将 x + v x + v x+v推动到分类边界上的最小的 Δ v i \Delta v_i Δvi。如上图2,数据点 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3叠加,3个不同的颜色分别表示不同的分类区域 R 1 , R 2 , R 3 \mathscr{R_1}, \mathscr{R_2}, \mathscr{R_3} R1,R2,R3。算法不断计算把当前扰动点 x i + v x_i + v xi+v推送到分类边界 R i \mathscr{R}_i Ri的最小扰动,其实也就是到决策边界最小距离(DeepFool),并把这个最小扰动聚合到当前扰动点上。

在这里插入图片描述
详细的讲,假如uap v v v没有在数据点 x i x_i xi愚弄到分类器,计算讲扰动点 x i + v x_i + v xi+v推送到分类决策边界的最小扰动 Δ v i \Delta v_i Δvi(这里是不是很像deepfool),并将KaTeX parse error: Undefined control sequence: \Delata at position 1: \̲D̲e̲l̲a̲t̲a̲ ̲v_i更新到uap v v v上,注意这里的更新并不是简单的加和,为了保持 ∣ ∣ v ∣ ∣ p < = ξ ||v||_p <= \xi vp<=ξ始终成立,将更新后的普遍扰动进一步投影到半径为 ξ \xi ξ并以 0 为中心的 p 球上。以此来提升uap v v v的愚弄效果。
在这里插入图片描述
在添加uap得到数据集 { x 1 + v , x 2 + v , . . . , x n + v } \{x_1 + v, x_2 + v, ..., x_n + v\} {x1+v,x2+v,...,xn+v},当新生成的数据在分类模型上的”愚弄率“大于阈值 1 − δ 1 - \delta 1δ时,算法终止。事实上,并不需要很大的数据 X X X来计算在整个 μ \mu μ分布上的图像的uap

值得注意的是,数据集 X X X的不同随机组合,会得到不同满足所需约束的uap v v v。所以这个方法可以用来生成多组不同的uap。

实验

作者设计了不同的实验,Table 1反映了uap在验证集上的fool rate;Figure 4展示了在不同模型结构上计算的uap;Figure 5训练数据集X的shuffle生成的不同uap;Table 2 给出了uap的跨模型泛华性。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值