高斯-赛戴尔(Gauss-Seidel)迭代法及算法实现

1、高斯-赛戴尔迭代法的定义以及表达形式

以下列方程组为例:

      在雅克比迭代法中,并没有对新算出的分量进行充分利用,一般来说,这些新算出计算的结果要比上一步计算的结果精确。

      对上式第二个方程组,第一行式子算出的x值立即投入第二行方程里,第二行式子的结果算出后投入第三行方程中,直到第n个方程。

      根据这种思路建立的迭代格式,就是高斯-赛戴尔迭代法。

      此处省略改进后的方程组。根据描述的改进方法可以推出。

2、收敛条件

迭代格式如下:

其中:

下面为一些定理:

3、误差定义

4、程序流程图

5、程序

#include<iostream>  
#include<math.h>  
using namespace std;  

const int n=3;  
void Gauss_Seidel();  
double A[n][n]={{8,-3,2},
	        {4,11,-1},
	        {2,1,4},
               };
// 系数矩阵A 对称正定 则迭代公式收敛
// 系数矩阵A 严格对角占优,则:A非奇异,迭代法收敛。
float B[n] = {20,33,12};
// 常数项

int main()    //主函数
{  
     Gauss_Seidel();  
}  

void  Gauss_Seidel()  //高斯-赛戴尔迭代法函数
{  
    double X[n]={0,0,0}; 
    for (int k=0;k<1000;k++){     //最大迭代次数为1000 
        for(int i=0;i<n;i++) {    //双重for循环遍历数组
            double sum=0;    
            for(int j=0;j<n;j++){    
                if(j==i) 
		    continue; //跳过
		else 
                    sum+=A[i][j]*X[j]; // 否则 矩阵和新算出的 进行运算
                }     
         X[i]=(B[i]-sum)/A[i][i];  ///计算完新的x[i],旧的x[i]会被自然冲掉  
        }    
    }   

	cout<<"系数矩阵为:"<<endl;
	for (int i=0;i<n;i++){     
        for(int j=0;j<n;j++) {
		cout<<A[i][j];
		cout<<'\t';	
		}
		cout<<B[i];
		cout<<endl;
	}


	cout<<"迭代结果:"<<endl;
    for (int i=0;i<n;i++)    //输出结果
       { 
		   cout<<X[i];    
           cout<<endl;    
	   }
}

 

6、运行结果

 

 

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值