Tensorflow中相关函数理论

这篇博客详细介绍了TensorFlow中的计算图、会话、Tensor和变量等基本概念,重点讲解了softmax函数、损失函数(包括二次代价和交叉熵代价)以及防止过拟合的方法。此外,还深入探讨了多种优化器,如梯度下降、Adadelta、Adagrad、Momentum(包含NAG)、RMSProp和Adam,解释了它们的工作原理和适用场景。
摘要由CSDN通过智能技术生成

基本概念
使用图(graphs)来表示计算内容,图中的节点称为op(operation),一个op获得0个或者多个Tensor,执行运算
使用会话(Session)的上下文(context)中执行图,,图必须在会话里被启动
使用tensor表示数据,可以看作一个n维的数组或列表
通过变量(Variable)维护状态
使用feed 和fetch 可以任意操作赋值或者从中提取数据
在这里插入图片描述
softmax
softmax可以给不同的对象分配概率。
在这里插入图片描述
损失loss
二次代价函数:实际值和预测值的平方差的均值
在这里插入图片描述
交叉熵代价函数:
在这里插入图片描述
对数释然函数常用来作为softmax回归的代价函数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值