怎样用非数学语言讲解贝叶斯定理(Bayes theorem)?

一机器在良好状态生产合格产品几率是90\% ,在故障状态生产合格产品几率是30\% ,机器良好的概率是75\% ,若一日第一件产品是合格品,那么此日机器良好的概率是多少?

这是贝叶斯定理的一个典型应用。如何在逻辑上进行推理,而不套用公式得到答案呢?这是我们今天的工作。

1 三个要素

概率的问题其实只要把握好概率空间的三要素样本空间,事件,概率就可以了。

那这三要素是什么意思呢?这里简单做个介绍。

还是经典的掷硬币。

样本空间就是事件条件下所得到的所有结果,因此掷一次硬币的样本空间为{正面,反面}。

而概率空间中的事件与我们平时生活中所说的事件没有任何分别。这里指的是此掷一次硬币。

概率,就是事件发生后,出现结果的个数与样本空间个数的比值。

假如此次为掷硬币的结果为正面,因为正面这个结果只发生了一次,而样本空间的个数是2,所以掷一次硬币出现正面的概率就为1/2 .

2 题目中的三要素

知道了概率空间的结构,我们来找找开篇题目中的三要素。

若一日第一件产品是合格品,那么此日机器良好的概率是多少?

这句话告诉我们,在产品是合格品的范围内,找到机器良好的发生概率。

可见所有的合格品是样本空间。而机器良好是事件

2.1 一个小tips

因为在概率论的题目中,经常出现不同样本空间下的概率数字,这样有时会产生困惑。因此,建议初学者使用一个基础数据,统一量纲。

这里的题目对象是产品,据此假设有1000件产品。开始我们的计算。

2.2 样本空间

我们把题目的信息都给加上去。首先我们的对象是产品。(后面没有标注单位的默认为件)

机器良好的概率是75\% ,则故障的概率为25\%

良好状态生产合格产品几率是90\% 。

在故障状态生产合格产品几率是30\%

需要注意的是,这里90\% 所对应的样本空间为良好状态。30\% 所对应的样本空间为故障状态。

放到同一张图中

因为最后要找的样本空间为所有的合格品,因此去掉对我们没有意义的机器是否正常的划分。

整个样本空间的大小为缩小为750件合格产品。

而机器正常时,生产出正常产品为675件.

因此答案就是 事件大小/样本大小 = 675/750=90\%

3 贝叶斯定理

3.1 条件概率

条件概率指在A 事件发生的情况下,B 事件发生的概率。

"A 事件发生的情况下",代表A 为样本空间,"B 事件发生的概率",代表A\cap B 为事件。

因此P(B|A)=\frac{P(A\cap B)}{P(A)} .

做一下公式变形 P(A\cap B)=P(B|A)P(A) .

3.2 贝叶斯定理

文章开头说了,这是一个贝叶斯定理的典型应用。

那贝叶斯定理到底是什么呢?

可见P(D)=P(D\cap A) + P(D\cap B) + P(D\cap C)

由条件概率的公式也可以写成

P(D)=P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(AC)

算出来的结果就是事件D 在样本空间S 下发生的概率。

先发生A 再发生D 的事件

计算事件在样本空间下的概率

那么M 发生在A 中的概率

P(A|D)=\frac{P(A\cap D)}{P(D)}

=\frac{P(D|A)P(A)}{P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(AC)}

这就是贝叶斯公式

https://www.matongxue.com/madocs/279

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
贝叶斯定理是一种用于计算条件概率数学定理,它基于先验概率和后验概率之间的关系。在概率论和统计学中,贝叶斯定理可以表示为: P(A|B) = (P(B|A) * P(A)) / P(B) 其中,P(A|B) 表示在事件 B 发生的条件下事件 A 发生的概率,P(B|A) 表示在事件 A 发生的条件下事件 B 发生的概率,P(A) 和 P(B) 分别表示事件 A 和事件 B 独立发生的概率。 在Python中,我们可以使用贝叶斯定理进行概率计算。有一些库可以帮助我们计算贝叶斯定理,如scipy和numpy。另外,还有一些专门用于贝叶斯推断的库,例如pymc3和stan。 以下是一个简单的例子,演示如何使用贝叶斯定理计算事件的概率: ```python def bayes_theorem(p_a, p_b_given_a, p_b): # 计算 P(A|B) p_a_given_b = (p_b_given_a * p_a) / p_b return p_a_given_b # 示例:假设有一个罐子里有30个苹果和20个橙子,从中随机抽取一个水果并判断是苹果或橙子。 # 假设苹果和橙子被随机选择的概率是相等的。 p_apple = 30 / 50 # P(A):苹果被选择的先验概率 p_orange = 20 / 50 # P(not A):橙子被选择的先验概率 p_apple_given_red = 25 / 35 # P(B|A):选择一个红色水果时选中苹果的条件概率 p_red = 35 / 50 # P(B):选择一个红色水果的概率 # 计算 P(apple|red) p_apple_given_red = bayes_theorem(p_apple, p_apple_given_red, p_red) print("P(apple|red) =", p_apple_given_red) ``` 这只是一个简单的例子,展示了如何使用贝叶斯定理进行概率计算。在实际应用中,贝叶斯定理可以用于各种领域,如机器学习、自然语言处理、图像处理等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值