矩阵乘法的结合律的证明

       矩阵的乘法在矩阵运算中相较于加法更加复杂,对矩阵乘法的运算律的证明也更复杂,但其中对结合律的证明是最难的,因为它涉及到3个矩阵的相乘。本证明不同于其他一些比较粗浅的用方阵去证明或者用三个含很少元素的简单矩阵做一个例证,而是用纯代数的知识做一个纯粹的证明,当然实际上它的证明也不难,并没有超出高中代数的范畴。矩阵代数本身也不难,但发明矩阵代数的人绝对是天才。

      设A是一个m行s列的矩阵,B是一个s行n列的矩阵,C是一个n行t列的矩阵,证明(AB)C = A(BC)

     证明:我们用 (a_{ij})_{m \times s}来表示矩阵A, $a_{ij}$是A的第i行j列的元素,类似得矩阵B我们用 (b_{ij})_{s \times n}来表示,矩阵C我们用 (c_{ij})_{n \times t}来表示。

      根据矩阵乘法可知(AB)C和A(BC)都是m行t列的矩阵,(AB)C我们用 (v_{ij})_{m \times t}来表示,A(BC)我们用 (w_{ij})_{m \times t}来表示,要证明(AB)C = A(BC),只需要证明 v_{ij}w_{ij}即可。要证明这一点,我们面临三个问题,1)如何得到(AB)C的元素 v_{ij}?2)如何得到A(BC)的元素w_{ij}?3)如何证明  v_{ij}w_{ij}

      (AB)C的元素v_{ij}是用AB的第i行和C的第j列相乘得到,而AB的第i行是用A的第i行和B的所有列相乘得到,用求和公式表达如下:v_{ij}  =  \sum _{l=1} ^{n} \left(\sum _{k=1} ^{s} a_{ik} b_{kl}\right) * c_{lj}  ,根据加法和乘法的分配律我们可以把c_{lj}放到里面那个求和的式子中得v_{ij}  = \sum _{l=1} ^{n} \sum _{k=1} ^{s} a_{ik} b_{kl}c_{lj}

       A(BC)的元素w_{ij}是用A的第i行和BC的第j列相乘得到,而BC的第j列是用B的所有行和C的第j列相乘得到,用求和公式表达如下:w_{ij}  =  \sum _{k=1} ^{s} a_{ik} * \left( \sum _{l=1} ^{n} b_{kl}c_{lj} \right),同样根据加法和乘法的分配律我们可以把c_{lj}放到里面那个求和的式子中得w_{ij}  = \sum _{k=1} ^{s} \sum _{l=1} ^{n} a_{ik} b_{kl}c_{lj}

      那么 v_{ij}w_{ij}?感觉是相等的,但确实是相等的,这里的i和j可取任意的可选的值,选定了之后我们把它们看成常量值,就可以用e_{kl} 来代换 a_{ik} b_{kl}c_{lj}于是v_{ij}  =  \sum _{l=1} ^{n} \sum _{k=1} ^{s} e_{kl},  w_{ij} =  \sum _{k=1} ^{s} \sum _{l=1} ^{n} e_{kl},这就很明显了,一个是矩阵的按列求所有元素的和一个是矩阵的按行求所有元素的和的式子, v_{ij}w_{ij}成立,于是矩阵乘法的结合律成立。

       矩阵的乘法的结合律成立之后,就可以去证明一系列的n阶矩阵(方阵)的幂运算的运算律,比如 A ^k A ^l = A ^{k+l}(A^k)^l = A^{kl}。同时n阶矩阵A和B如果可交换,也可以去证明一些涉及到A、B的运算律,比如(AB)^k = A^kB^k(A+B)^2 = A^2 + 2AB + B^2(A - B)(A + B) = A^2 - B^2

      引申一下想想结合律成立意味着什么?

       意味着一个式子可以不严格按照从左到右的顺序进行运算,我们可以让式子中任意的两个紧挨着的运算数进行运算,我们以不同的顺序对式子进行运算结果是一样的,我们可以用归纳法证明这一点。

       我们可以对式子的运算数数目施归纳,我们以一个连乘的式子为例,假设有一个连乘的式子 ,a_1*a_2...a_{i}*a_{i+1}...a_k*a_{k+1}

       basis:显然当n为1、2和3的时候结论成立

       induction:假设n=k时成立,要证n为k+1时结论成立

       包含k+1个运算数的连乘式子为 ,假设情形1: a_ka_{k+1}结合,令它们相乘的结果为 a^{'}_k,则连乘式子变为 a_1*a_2...a_{i}*a_{i+1}...a^{'}_k,这个式子的运算数为k,按照归纳假设这个式子的结果与运算顺序无关,它的结果可以表示为(a_1*a_2...a_{i}*a_{i+1}...a_{k-1})*a^{'}_k 也即是 (a_1*a_2...a_{i}*a_{i+1}...a_{k-1})*(a_k*a_{k+1});假设情形2: a_k不和 a_{k+1}结合,则a_1*a_2...a_{i}*a_{i+1}...a_k*a_{k+1} 的结果可以表示为((a_1*a_2...a_{i}*a_{i+1}...a_{k-1})*a_k)*a_{k+1} ,根据乘法运算的结合律知(a_1*a_2...a_{i}*a_{i+1}...a_{k-1})*(a_k*a_{k+1})((a_1*a_2...a_{i}*a_{i+1}...a_{k-1})*a_k)*a_{k+1}相等,即 a_1*a_2...a_{i}*a_{i+1}...a_k*a_{k+1}按照情形1和情形2进行运算结果是一样的,它也只有这两种运算情形,因此证明n为k+1时结论 成立。

  • 7
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__空无一人__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值