Kimi VS 智谱 VS 360:推理型AI搜索哪家强?!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普AI工具测评AI效率提升AI行业洞察。关注我,AI之路不迷路,2024我们一起变强。

推理型AI搜索是近期AI应用领域比较火的方向之一。国内的AI厂商,如月之暗面的Kimi推出了Kimi探索版,智谱AI推出了AI搜索智能体,360AI则是在原有的360AI搜索的基础上增加了慢思考模式。国外的AI玩家,如AI搜索的领头羊Perplexity,也在这两天在Pro Search中增加了能够自动运行的推理模式(Reasoning Mode)

推理型AI搜索源自于OpenAI发布的推理模型o1。在o1中,OpenAI内置了一个被称为“内部思维链(Internal Chain of Thought)”的推理逻辑,对于复杂的任务,该模型会先生成推理链条进行自我推理,然后再用逐个击破的思想一步步得出回答。

推理型AI搜索也是基于这个思路。搜索作为AI模型应用的一大热门领域,属于比较高频的使用场景。而在推理型AI搜索诞生前,传统的AI搜索对于稍微复杂一些的问题往往无法胜任。推理让AI搜索看到了进化的方向。面对复杂问题,比如仅凭搜索信息得不到直接的答案的问题,推理型AI搜索可以先让模型“思考”,分析问题,拆解为数个子问题,然后逐个解决子问题,最后还可以加上一个在AI Agent中常用的“反馈(Reflection)”机制,以让模型检查并优化回答的质量。

从这一点来看,推理型AI搜索本质上可以看作是一个大号的AI Agent(智能体)。

测评问题

本次测试对象由于都是国内的AI搜索工具,我们先测试中文互联网内的问题。

提示词:全面回顾A股历史上的牛市。

结论

先上结论。

  • 内容全面性:360AI搜索的回答最为全面,涵盖了牛市的各个方面;智谱AI的回答次之,提供了主要数据;Kimi探索版的回答相对简洁。

  • 结构和逻辑性:三者中,360AI搜索的结构最为严谨,层次分明;Kimi探索版的回答简洁明了;智谱AI的回答则偏向于数据罗列。

  • 分析深度:360AI搜索对牛市的分析最为深入,涵盖了市场环境和规律等;Kimi探索版和智谱AI的分析相对简单。

  • 数据和事实准确性:智谱AI和360AI搜索提供了较多具体数据,但需注意数据的一致性和准确性;Kimi探索版的数据相对较少。

  • 可读性:Kimi探索版的回答简洁,适合快速阅读;智谱AI的回答数据密集,适合对数字敏感的读者;360AI搜索的回答信息量大,适合深入研究。

Kimi探索版

Kimi探索版是基于Kimi原有的联网搜索工具的一个升级版本。关于其详细信息可以看我这篇文章:《『深度分析』Kimi版o1来了!Kimi探索版全面解读!》。

Kimi探索版针对“全面回顾A股历史上的牛市”这个问题的回答如下。完整版回答文字过长,所以这里放上回答的截图。

Kimi点评

优点:

  1. 结构清晰,层次分明:Kimi的回答将A股历史上的牛市分为六个主要阶段,每个阶段都有明确的标题和时间段,条理清晰,最易读,便于理解和记忆。

  2. 内容精炼,重点突出:每个阶段都包含背景、特点和结果三个部分,信息简洁明了,抓住了每次牛市的核心要点。

  3. 总结概括到位:在结尾处对A股牛市的整体特征进行了总结,强调了政策和资金作为主要驱动因素的重要性。

不足:

  1. 时间段划分存在交叉:将1996-2001年定义为“政策牛市”,而同时又将1999-2001年定义为“5.19行情”,这可能会引起混淆,时间段划分需更严谨。

  2. 细节描述略显不足:对于每次牛市的具体细节和影响,描述过于简略,缺乏深入的分析和数据支持。(这一点和我在上一篇文章里的测评结果一致,都有着分析不够深入的缺点)

智谱AI搜索智能体

智谱推出的推理型AI搜索位于智谱智能体——AI搜索

智谱AI搜索智能体回答如下。

智谱点评

优点:

  1. 全面性强:回答罗列了A股自1990年以来的九次主要牛市,覆盖了历史上的重要阶段。

  2. 数据详实:每次牛市都提供了具体的涨幅、持续时间(时间甚至精确到日)和指数点位,数据丰富。

  3. 原因分析简明:对每次牛市的主要推动原因进行了简要说明,帮助读者了解背后的驱动因素。

不足:

  1. 缺乏深入分析:和前面的Kimi一样,虽然提供了数据和原因,但对每次牛市的特点、影响等缺乏更深入的探讨。从回答来看,仅是对事实的罗列,而深入分析的回答内容太少。

  2. 缺少整体总结:在列举完各次牛市后,没有对A股牛市的整体规律或特征进行总结和概括。

  3. 数据源不够多:相比Kimi的41个网页,360AI搜索的27篇资料,智谱引用的数据源是最少的,仅有14个搜索来源,阅读了5个网页。丰富的数据源是回答质量的基础,在这一点,智谱还需要加强。比如智谱的回答中提到最后一个牛市是2019年初至今,这一点回答明显是错误的(A股向来是牛短熊长,和美股相反,何来5年多的牛市?)。

360AI搜索慢思考模式

360AI搜索,背靠原本的360搜索引擎,曾一度成为国内AI工具的月活第一名。推理型AI搜索则作为一个新模式——慢思考模式出现,可以在360AI搜索输入框下方看到入口。

360AI搜索慢思考模式回答如下。考虑到360AI搜索回答篇幅过长,隐去了慢思考模式的思维链。

360AI搜索点评

优点:

  1. 内容详尽全面:回答不仅列举了各次牛市,还包括了牛市的持续时间、涨幅、推动因素、政策影响、市场环境分析、规律特点等,多角度、多层次地进行了阐述。这一点,360AI搜索做的最好,不仅指出了牛市的各项信息,还进行了多方面总结。

  2. 深入分析:对牛市的推动因素、政策影响、市场环境等进行了深入的分析,体现了较高的专业水平。

  3. 总结归纳:对牛市的特点和影响进行了综合分析,有助于读者全面理解A股市场的历史规律。

不足:

  1. 信息量较大,可能造成阅读负担:内容详尽虽然是优点,但过多的信息可能会让读者感觉冗长,影响阅读体验。

  2. 部分数据需核实:例如,提到“六次牛市的平均持续时间约为17.8个月”,但前文列举了八次牛市,数据前后需一致。其次,360AI搜索关于牛市的总结仅截止到了2015年,应该是受到了信息源的影响,2015年后的事情只字未提。

结语

那么,你觉得在这个测试中,Kimi探索版、智谱AI搜索智能体和360AI搜索慢思考模式,谁胜出?


精选推荐


都读到这里了,点个赞鼓励一下吧,小手一赞,年薪百万!😊👍👍👍。关注我,AI之路不迷路,原创技术文章第一时间推送🤖。

以下是几种主流深度学习框架的功能介绍: 1.PyTorch • 动态计算图:PyTorch采用动态计算图,允许用户在运行时构建修改计算图,这使得调试开发更加灵活。 • 自动求导:提供了大的自动微分机制,能够自动计算梯度,极大地简化了神经网络的训练过程。 • 易用性与灵活性:代码风格接近Python,简洁易懂,与Python数据科学栈(如NumPy)高度集成。 • 分布式训练与混合精度训练:支持多GPU多节点的分布式训练,以及混合精度训练,可显著加速训练过程。 • 社区支持:拥有活跃的社区丰富的资源,适合学术研究工业级应用。 2.TensorFlow • 静态计算图:TensorFlow采用静态计算图,在训练前需要先构建完整的计算图,适合大规模分布式训练生产级部署。 • TensorBoard可视化:提供了大的可视化工具TensorBoard,可用于监控训练过程、分析模性能。 • 丰富的API工具:支持多种硬件加速,提供了从底层到高层的丰富API,满足不同层次用户的需求。 • 模部署:通过TensorFlow Serving等工具,可以方便地将模部署到生产环境中。 3.Keras • 高层API:Keras是一个高层神经网络API,运行在TensorFlow等框架之上,以简单易用、高度模块化著称。 • 快速构建模:提供了SequentialFunctional API两种模定义方式,适合快速构建测试神经网络。 • 数据预处理:内置了多种数据预处理函数,如独热编码、序列填充等。 • 模评估与调优:支持使用回调函数(如EarlyStopping学习率调度器)来优化训练过程。 4.其他框架 • Caffe/Caffe2:主要用于计算机视觉任务,支持卷积神经网络(CNN),以高效的训练推理速度著称。 • MXNet:支持灵活的模定义高效的分布式训练,适合大规模数据集。 • PaddlePaddle:百度开发的深度学习框架,支持多种硬件加速,提供了丰富的预训练模工具。 • Deeplearning4j:基于Java的深度学习框架,适合在Java生态中使用。 深度学习框架的通用功能 1. 数据预处理:大多数框架提供了数据加载、预处理(如归一化、标准化、数据增等)的工具。 2. 模定义:用户可以通过内置的层(如全连接层、卷积层等)快速搭建神经网络。 3. 训练与优化:支持多种优化算法(如SGD、Adam等),并提供自动求导功能。 4. 模评估与部署:可以对模进行评估,并通过工具将模部署到生产环境中。 这些框架各有优势,选择时可以根据具体需求、开发习惯项目规模来决定。以下是关于大模搜索引擎超级计算模板的相关信息: 大模搜索引擎 1. 博查AI搜索 • 国内首个支持多模AI搜索引擎,集成了通义千问、字节云雀、月之暗面Kimi等多个顶尖AI大模。 • 提供干净、无广告的搜索体验,支持实时信息获取多模切换,能够直接生成问题的答案,而非传统搜索引擎的链接列表。 • 其AI能体深度回答功能(内测中)可提供更丰富、深入的搜索结果。 • 网址:[]()。 2. 秘塔AI搜索 • 能够深入理解用户问题,提供无广告、直达结果的搜索体验。 3. 卡奥斯能交互引擎 • 专注于工业知识搜索解决方案精准生成,融合能检索、应用多模态连续交互功能,以“大连接、大数据、大模”为基础技术。 4. 360AI搜索 • 结合大模搜索技术,注重用户体验,通过多步推理慢思考模式提高答案质量准确性。 5. 知乎直答 • 利用知海图AI大模处理内部文本数据,并整合其他网站文章,生成丰富参考答案。 6. 天工AI搜索 • 搭载天工大模,提供能、高效、快速的搜索体验,支持全网信息搜索能聚合,并可将结果整理为脑图大纲。 7. Perplexica • 开源AI驱动搜索引擎,可使用GrokOpenAI等模本地运行,适用于学术研究、写作等场景。 8. MindSearch • 基于LLM的多代理框架,通过WebPlannerWebSearcher模拟人类多步信息寻求整合过程,能够从大规模网页中并行寻求整合信息。 超级计算模板 • AI超级计算机 • 专为人工智能应用设计的高性能计算系统,能够处理分析海量数据,支持复杂的机器学习深度学习任务。 • 典应用场景包括语言大模、视觉大模多模态大模的训练,广泛应用于自动驾驶、能安防、医学影像等领域。 • 开源AI搜索引擎技术栈 • 一些开源AI搜索引擎(如OpenPerPlex、LangChain-SearXNG等)结合了多种技术,包括语义分块、搜索引擎集成(如SearXNG)、大模(如Llama 3)推理引擎(如Groq),为开发者提供了大的技术框架。 这些工具平台为大模的应用开发提供了丰富的支持,用户可以根据具体需求选择合适的搜索引擎或计算模板。在讨论如何通过编程实现更环保、低排放的生成式AI时,需要从多个方面来考虑“更好”的编程方式。这里的“更好”可以包括更高的效率、更低的能耗、更简洁的代码以及对环境影响的最小化。以下是一些具体的建议方向: --- 1.选择合适的编程语言 不同的编程语言在性能、开发效率资源消耗方面各有优劣。对于开发低能耗的AI应用,以下语言可能是较好的选择: Python • 优点: • 丰富的库框架:Python是深度学习AI领域的主流语言,拥有大量的开源库(如TensorFlow、PyTorch、Keras等),这些库经过优化,能够高效地利用硬件资源。 • 易读性开发效率:Python语法简洁,易于理解维护,适合快速开发迭代。 • 社区支持:拥有庞大的开发者社区,遇到问题时更容易找到解决方案。 • 优化方向: • 使用高效的Python库(如NumPy、Pandas)进行数据处理。 • 利用JIT编译器(如Numba)加速Python代码的执行。 • 避免不必要的循环复杂的数据结构,减少内存占用。 C++ • 优点: • 高性能:C++在执行效率上优于Python,尤其是在大规模数据处理复杂计算任务中。 • 底层控制:能够直接操作硬件资源,适合对性能要求极高的场景。 • 优化方向: • 使用高效的算法数据结构。 • 利用多线程并行计算技术充分利用多核CPU。 • 结合CUDA等技术加速GPU计算。 Julia • 优点: • 高性能与易用性:Julia在性能上接近C++,同时语法简洁,类似于Python。 • 内置并行计算支持:Julia原生支持多线程分布式计算,适合大规模并行任务。 • 优化方向: • 利用Julia的内置并行计算功能,减少计算时间。 • 使用预编译的包库,避免运行时的性能开销。 --- 2.编程实践中的优化策略 无论选择哪种语言,以下编程实践都能帮助降低能耗提高效率: 高效的数据处理 • 避免重复计算:缓存中间结果,避免重复执行相同的计算。 • 批量处理:将数据分批处理,减少I/O操作内存占用。 • 数据压缩:在不影响模性能的前提下,对数据进行压缩以减少存储传输成本。 代码优化 • 减少不必要的循环递归:优化算法复杂度,减少不必要的计算。 • 使用内置函数库:内置函数通常经过优化,比自定义实现更高效。 • 内存管理:合理管理内存分配释放,避免内存泄漏。 并行计算 • 多线程多进程:利用多核CPU的计算能力,将任务分配到多个线程或进程中。 • GPU加速:对于深度学习任务,使用GPU加速可以显著减少计算时间能耗。 • 分布式计算:对于大规模任务,可以使用分布式计算框架(如Apache Spark)将任务分配到多个节点上。 --- 3.开发环境工具的选择 • 使用高效的IDE:选择支持代码优化、性能分析调试的集成开发环境(如PyCharm、Visual Studio Code)。 • 性能分析工具:使用性能分析工具(如Python的cProfile、C++的gprof)来识别代码中的性能瓶颈。 • 代码审查:定期进行代码审查,优化算法数据结构,减少冗余代码。 --- 4.环境友好编程的额外建议 • 选择绿色云计算服务:使用采用可再生能源的数据中心,减少碳排放。 • 模优化:选择更高效的模架构,避免过度复杂的模。例如,使用轻量级模(如MobileNet)代替大。 • 资源管理:合理规划硬件资源,避免过度配置。例如,根据任务需求动态调整GPU资源。 --- 总结 选择“更好”的编程语言实践需要综合考虑任务需求、开发效率环境影响。Python是目前AI领域的主流选择,适合快速开发迭代;C++适合对性能要求极高的场景;Julia则在性能易用性之间取得了很好的平衡。无论选择哪种语言,通过优化代码、利用并行计算选择绿色计算资源,都可以显著降低生成式AI的碳排放,实现更环保的编程目标。
03-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值