大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工具测评,AI效率提升,AI行业洞察。关注我,AI之路不迷路,2025我们继续出发。
AI Agent(智能体) 有多火?
火到OpenAI CEO Sam Altman,谷歌CEO Sundar Pichai,以及Anthropic官方纷纷为它站台,表示AI Agent是2025年的一项重要工作目标。
近日,阿里通义团队开源了一个AI Agent相关的王炸级产品——Qwen-Agent!这是一个专门用来开发AI Agent的应用框架,基于通义自家的Qwen
模型,提供了一套完整的解决方案,旨在让Agent开发变得更加高效、便捷。
关于 Qwen-Agent
简单来说,Qwen-Agent是一个帮你快速搭建AI Agent的工具包。可以把它看作一个“脚手架”,将Agent需要的各种能力,比如:理解你说的话(指令遵循)、使用各种工具(工具调用)、自己做计划(规划)、记住你们聊了什么(记忆)等,都打包到了一起。基于Qwen-Agent框架,只需要像搭积木一样,把这些能力组合起来,就能创造出你想要的Agent。
如果Qwen
模型是AI Agent的“大脑”,那Qwen-Agent就是它的“四肢和躯干”,赋予其行动能力,使其能够与现实世界进行互动。
Qwen-Agent 核心功能
-
1. Agent工作流: Qwen-Agent能够赋予Agent类似人类的思维模式,使其在执行任务时先进行思考、制定计划,再逐步执行。例如,当用户指令为“预订一张明天前往北京的机票”,Agent会首先分析任务步骤(例如:查询航班、选择合适的航班、填写乘客信息、支付票款),然后按步骤完成,而非盲目执行。
-
2. 工具调用能力: Qwen-Agent的一大亮点在于其强大的工具调用能力。这里的“工具”并不仅限于传统的API接口,它可以是任何可被调用的外部程序或服务,例如:
-
调用搜索引擎检索信息
-
利用代码解释器执行Python代码,进行数据分析
-
连接数据库进行数据查询
-
甚至控制智能家居设备
借助这些工具,Agent的能力边界将进一步拓展。
-
-
3. 内置代码解释器,执行代码: Qwen-Agent集成了代码解释器,支持直接运行Python代码。这使得Agent不仅限于文本交互,还能胜任代码编写、数值计算、数据分析等任务。(注意:通义官方特别指出,代码解释器目前未进行沙盒隔离,在实际应用中务必注意安全性,避免直接将其用于生产环境。)
-
4. RAG检索技术: Qwen-Agent支持检索增强生成(RAG)技术。通过接入外部知识库(如企业内部文档、产品手册等),Agent能够结合知识库内容生成更准确、更详实的答案,避免“一本正经地胡说八道”。值得一提的是,Qwen-Agent中的RAG方案是进行了特别优化的,在处理长文档问答时性能表现优秀,甚至好于一些原生支持长上下文的模型。
-
5. 上下文记忆能力: Qwen-Agent能够赋予AI Agent上下文记忆能力,使其能够记住对话历史,从而实现流畅的、符合语境的多轮对话,避免“金鱼式”对话。
-
6. Web交互界面: Qwen-Agent支持一键部署Gradio Web界面,为用户提供直观友好的交互环境,方便进行Agent的测试与调试。
Qwen-Agent 快速上手
先附上Qwen-Agent的官方项目地址。
Qwen-Agent官方项目地址:https://pypi.org/project/qwen-agent
Qwen-Agent GitHub 仓库:https://github.com/QwenLM/Qwen-Agent
Qwen-Agent作为一个应用框架,操作简单,很容易上手。
1. 安装:
通过pip命令即可安装Qwen-Agent:(根据需要选择依赖,例如gui
、rag
、code_interpreter
等)
pip install -U "qwen-agent[gui,rag,code_interpreter,python_executor]"
或者从源码进行安装:
git clone https://github.com/QwenLM/Qwen-Agent.git
cd Qwen-Agent
pip install -e ./"[gui,rag,code_interpreter,python_executor]"
2. 配置:
你可以选择直接用阿里云的DashScope模型服务,也可以自己部署开源模型。
-
DashScope 用户: 只需要设置一下
DASHSCOPE_API_KEY
环境变量就行。 -
自己部署: 参考Qwen2的README文档,用vLLM或者Ollama部署一个OpenAI兼容的API服务即可。
3. 示例演示:
以下代码示例将创建一个AI绘图的Agent。(基于官方示例精简)
import pprint
import urllib.parse
import json5
from qwen_agent.agents import Assistant
from qwen_agent.tools.base import BaseTool, register_tool
# 定义一个画图工具
@register_tool('my_image_gen')
class MyImageGen(BaseTool):
description = 'AI 画图工具,输入描述,返回图片 URL'
parameters = [{
'name': 'prompt',
'type': 'string',
'description': '详细的图片描述',
'required': True
}]
def call(self, params: str, **kwargs) -> str:
prompt = json5.loads(params)['prompt']
prompt = urllib.parse.quote(prompt)
return json5.dumps(
{'image_url': f'https://image.pollinations.ai/prompt/{prompt}'},
ensure_ascii=False)
# 配置 LLM (这里用 DashScope 举例)
llm_cfg = {
'model': 'qwen-max',
'model_server': 'dashscope',
# 'api_key': '你的 DASHSCOPE_API_KEY', # 或者设置 DASHSCOPE_API_KEY 环境变量
}
# 创建一个 Agent
bot = Assistant(llm=llm_cfg, function_list=['my_image_gen'])
# 运行 Agent
messages = []
while True:
query = input('你:')
messages.append({'role': 'user', 'content': query})
response = []
for response in bot.run(messages=messages):
print('Agent:')
pprint.pprint(response, indent=2)
messages.extend(response)
运行上面的代码,就可以跟你的Agent聊天了,比如输入“画一幅宁静的夏日海滩风景画”,它就会调用my_image_gen
工具,给你返回一个图片的URL。
4. 更多玩法:
Qwen-Agent官方还提供了几个实用的案例:
-
Browser Assistant (浏览器助手): 可以让Agent浏览网页、搜索信息等等。
-
Code Interpreter (代码解释器): 前面介绍过的执行Python代码的工具。
-
Custom Assistant (自定义助手): 可以根据自己的需求,定制Agent。
结语
Qwen-Agent,阿里又一开源王炸。
精选推荐
都读到这里了,点个赞鼓励一下吧,小手一赞,年薪百万!😊👍👍👍。关注我,AI之路不迷路,原创技术文章第一时间推送🤖。