「Claude3.5」全面超越「gpt-4o」,我用它做了个贪吃蛇,玩了一整天!

大家好,我是凡人。

就在昨天晚上Anthropic在X上连续发了4条动态来高调宣布他们的Claude 3.5 Sonnet中杯的版本已经全面向公众开放使用,大批的技术博主连夜测试,纷纷给出的不低的评价。

图片

而这还仅仅是开胃小菜,官方宣称今年晚些时候将会陆续推出 Claude 3.5 Haiku 和 Claude 3.5 Opus多个不同版本,相信届时还会带来更多惊喜,好了废话不多说,咱们开始。

一、Claude 3.5 Sonnet有哪些提高

Claude 3.5 Sonnet除了在在零样本MATH和MMLU评测中小幅落后GPT-4o,在其他方面都提高了行业标准,同时在各项评估中的表现都优于竞争对手模型和Claude 3 Opus。

图片

本次Claude 3.5 Sonnet的优势在于:

性能优势:Claude 3.5 Sonnet在智能方面树立了新的行业标准,在专业知识、编码和复杂推理等多个领域的表现优于包括GPT-4o、Gemini 1.5 Pro等可用模型。在运行速度方面,Claude 3.5 Sonnet也是自家Claude 3 Opus的两倍。

图片

成本效益:与Claude 3 Opus相比,Claude 3.5 Sonnet的成本仅为后者的五分之一,每输入百万token只要3美元,输出每百万token只需15美元,提供了极高的性价比。

应用场景广泛:Claude 3.5 Sonnet适用于多种应用场景,包括客户服务、软件开发、图像处理、数据分析等,能够满足不同行业和领域的需求。

技术创新:Claude 3.5 Sonnet在理解力、写作创意性、图像处理能力等方面取得了质的飞跃,能够生成更自然且类似人类风格的高质量内容,同时具备强大的视觉模型能力。

图片

二、用Claude编写简单的贪吃蛇

首先我们打开Claude 3.5 Sonnet版本的Artifacts(预览版面):

1、点开右边的图标。

2、选择“Feature Preview”。

图片

3、打开“Artifacts”的按钮为 ON 。

图片

我们尝试提问 “ 我想创建一个简单贪吃蛇游戏,需要有怎样的步骤 ” ,它会直接生成一段简单的贪吃蛇的代码。

图片

再次对代码进行优化 “ 我想贪吃蛇的豆子是金黄色, 蛇头的颜色红色,吃完后蛇身体是黑色的 ” 。

图片

然后可以不断加入自己对贪吃蛇的需求,但是要注意,因为Claude 3.5 Sonnet版本对免费版本的限制1个小时只能发送三次信息,否则会提醒你升级到收费版本。

图片

接下来我们将代码拷贝到编辑工具中进行运行。

图片

下面来看看效果,我还加入了速度控制,玩起来还不错,哈哈。

三、收费情况

关于收费情况,Claude 3.5 Sonnet版本目前官网说是免费,但真实情况是每天免费对话 10 次,如果还要用就是每小时 3 次,相比Gpt-4o的每天免费使用10次,稍微良心一丢丢。

而它的收费Pro版本是20美刀一个月。

图片


怎么样今天的内容还满意吗?再次感谢观众老爷的观看。

最后,祝您早日实现财务自由,还请给个赞,谢谢!

### 不同AI模型的评测成绩和性能对比 #### DeepSeek-V3 vs Qwen2.5-72B DeepSeek-V3是一个拥有671B参数的大规模语言模型,而Qwen2.5则有72B参数。在多个基准测试中,DeepSeek-V3的表现优于GPT-4o和Claude-3.5 Sonnet,在某些特定任务上的表现尤为突出[^1]。相比之下,尽管Qwen2.5的参数量较小,但在一些自然语言理解任务上依然表现出色,并且由于其开源特性,受到了社区的高度关注和支持。 #### DeepSeek-V3 vs Llama-3.1-405B Llama-3.1具有405B参数,介于DeepSeek-V3和Qwen2.5之间。然而,DeepSeek-V3采用了先进的混合专家(MoE)架构,使得每个token仅激活约37B参数,从而提高了计算效率并增强了模型的能力。这种设计让DeepSeek-V3能够在资源有限的情况下提供更高效的推理服务,同时也保持了较高的准确性[^2]。 #### DeepSeek-V3 vs GPT-4o 作为一款闭源产品,关于GPT-4o的具体实现细节较少公开披露。但从已有的评估来看,DeepSeek-V3已经在多项指标上超越了这一版本的GPT系列模型。特别是在涉及复杂语境理解和多轮对话的任务场景下,DeepSeek-V3展现了更强的理解力和响应质量。 #### DeepSeek-V3 vs Claude-3.5-Sonnet 同样属于闭源阵营的一员,Claude-3.5 Sonnet也是一款备受瞩目的大语言模型。不过根据现有资料,DeepSeek-V3无论是在参数规模还是实际应用效果方面均有所领先。尤其是在跨领域迁移学习能力以及对新兴话题的学习速度等方面,DeepSeek-V3显示出明显的优势。 ```python import matplotlib.pyplot as plt models = ['DeepSeek-V3', 'Qwen2.5-72B', 'Llama-3.1-405B', 'GPT-4o', 'Claude-3.5'] params = [671, 72, 405, None, None] plt.bar(models, params) plt.xlabel('Model') plt.ylabel('Parameters (in Billions)') plt.title('Parameter Comparison of Different AI Models') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值