Description
N后问题在N×N的棋盘上放置N个皇后而彼此不受攻击(即在棋盘的任一行、任一列和任一对角线上不能放置两个皇后),编程求解所有的摆放方法。
Input
第一行为测试数据组数T接下来T行,每行一个整数n(1<=n<=10)
Output
输出T行为每行为相应的方案数
Sample Input
1
1
Sample Output
1
这个题目是一个很经典的dfs的题目。n后问题,一定是在一个n * n的棋盘上,所以会有 n 行 n 列,那么我们就可以这样想:每一个皇后都需要一行上,那么我们遍历每一个皇后在该行所在的可能位置就可以了。如果可行,那么进入下一行查找下一个皇后,如果8个皇后都已经放好了那么就结果加 1,返回上一层。
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 15;
int q[maxn];
int n, sum = 0;
int place(int k)
{
for(int i = 1; i < k; i++) //与之前每一个点都比较,两两斜率不能相同
if(abs(k - i) == abs(q[k] - q[i]) || q[k] == q[i]) //判断是否同一斜率,是否同一列
return 0;
return 1;
}
void dfs(int step)
{
if(step > n)
{
sum++;
return ;
}
for(int i = 1; i <= n; i++)
{
q[step] = i;
if(place(step)) dfs(step + 1);
}
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
sum = 0;
scanf("%d", &n);
dfs(1);
printf("%d\n", sum);
}
return 0;
}