基础算法_N皇后问题(回溯法 dfs)

本文介绍了一个经典的N皇后问题,并提供了一种使用深度优先搜索(DFS)算法来寻找所有可能的解决方案的方法。通过递归地放置皇后并检查冲突,文章中的代码能够计算出在N×N的棋盘上放置N个皇后的所有合法方式的数量。
摘要由CSDN通过智能技术生成

Description

N后问题在N×N的棋盘上放置N个皇后而彼此不受攻击(即在棋盘的任一行、任一列和任一对角线上不能放置两个皇后),编程求解所有的摆放方法。

image.png

Input
第一行为测试数据组数T接下来T行,每行一个整数n(1<=n<=10)

Output
输出T行为每行为相应的方案数

Sample Input
1
1
Sample Output
1

这个题目是一个很经典的dfs的题目。n后问题,一定是在一个n * n的棋盘上,所以会有 n 行 n 列,那么我们就可以这样想:每一个皇后都需要一行上,那么我们遍历每一个皇后在该行所在的可能位置就可以了。如果可行,那么进入下一行查找下一个皇后,如果8个皇后都已经放好了那么就结果加 1,返回上一层。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 15;
int q[maxn];
int n, sum = 0;

int place(int k)
{
    for(int i = 1; i < k; i++)   //与之前每一个点都比较,两两斜率不能相同
      if(abs(k - i) == abs(q[k] - q[i]) || q[k] == q[i])    //判断是否同一斜率,是否同一列
        return 0;   
    return 1; 
}

void dfs(int step)
{
    if(step > n)
    {
        sum++;
        return ;
    }
    for(int i = 1; i <= n; i++)
    {
        q[step] = i;
        if(place(step)) dfs(step + 1);
    }
}

int main()
{
    int t;
    scanf("%d", &t);
    while(t--)
    {
        sum = 0;
        scanf("%d", &n);
        dfs(1);
        printf("%d\n", sum);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值