用高斯分布模型(GMM)对输入进行概率预测

用高斯分布模型(GMM)对输入进行概率预测,输出概率列表,与给定阈值进行比较,最后输出符合条件的下标

a = torch.randn(5,1)
print(a)
gmm = GaussianMixture(n_components=2, max_iter=10, tol=1e-2, reg_covar=5e-4)
gmm.fit(a)
prob = gmm.predict_proba(a)
print(prob)
print(gmm.means_)
means = gmm.means_.argmin()
print(means)
prob = prob[:, gmm.means_.argmin()]
print(prob)
pred = prob > 0.5
print(pred)
print(pred.nonzero())
pred_idx = pred.nonzero()[0]
print(pred_idx)
print(type(pred_idx))

--------------------------------------------------------------
tensor([[ 0.0500],
        [ 0.3039],
        [-1.1827],
        [-0.0728],
        [ 0.4576]])
[[1.00000000e+00 0.00000000e+00]
 [1.00000000e+00 0.00000000e+00]
 [2.27977968e-10 1.00000000e+00]
 [1.00000000e+00 0.00000000e+00]
 [1.00000000e+00 0.00000000e+00]]
[[ 0.18468334]
 [-1.18270671]]
1
[0. 0. 1. 0. 0.]
[False False  True False False]
(array([2], dtype=int64),)
[2]
<class 'numpy.ndarray'>

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值