【自然语言处理之文本分类】——GloVe和FastText

本文介绍了自然语言处理中的GloVe和FastText两种词向量模型,GloVe基于全局词频统计,而FastText是word2vec的扩展,利用字符级n-grams。文章详细讲解了它们的训练过程、输入输出结构以及预训练词向量资源。
摘要由CSDN通过智能技术生成

【自然语言处理之文本分类】——GloVe和FastText

GloVe

GloVe(Global Vectors for Word Representation)它是一个基于全局词频统计(count-based & overall statistics)的词表征。

GloVe 官方提供的预训练词向量:
https://nlp.stanford.edu/projects/glove/

FastText

FastText 是 word2vec 衍生物,都基于 CBOW 模型。是词向量模型也是一个快速的文本分类方法。FastText 使用了字符级别的 n-grams 来表示一个单词。
对于单词“apple”,假设 n 的取值为 3,则它的 Trigram 有:“<ap”, “app”, “ppl”, “ple”, “le>”。

参考
ps:上图参考https://blog.csdn.net/weixin_36604953
在这里插入图片描述
FastText 模型架构和 word2vec 的 CBOW 模型架构非常相似,与 CBOW 一样,FastText 模型也只有三层:输入层、隐含层、输出层(Hierarchical Softmax),输入1 x~ Nx为输入每个单词 Char-level 的 N-gram 向量。

训练过程与 CBOW 一样,只不过CBOW 的输入是目标单词的上下文,FastText 的输入是多个单词及其 n-gram 特征,这些特征用来表示单个文档;

CBOW 的输入单词被 one-hot 编码过,FastText 的输入特征是被 embedding 过;CBOW 的输出是目标词汇,FastText 的输出是文档对应的类别。

网上有提供了三个预训练的词向量:

  1. wiki-news-300d-1M.vec.zip: 在维基百科 2017、UMBC webbase 语料库和statmt。
    org 新闻数据集中(16B tokens)训练的 100 万个词向量。

  2. wiki-news-300d-1M-subword.vec.zip: 在维基百科 2017、UMBC webbase 语料库和 statmt.org 新闻数据集(16B tokens)中包含子单词信息训练的100 万个词向量。

  3. crawl-300d-2M.vec.zip: 在 Common Crawl 训练的 200 万个词向量(600B tokens)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

emos小恶魔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值