Python 深度学习模型训练名词解释:训练集,验证集,测试集

本文概述了训练集、验证集和测试集在深度学习中的作用。训练集用于模型学习,验证集用于监控学习进度并调整模型,而测试集则用来评估模型在未知数据上的性能。它们虽独立但相互关联,共同推动模型优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练集,验证集,测试集这三个数据集是独立存在的。
训练集和验证集的关系:训练集和验证集是同时使用的,为什么这样说呢?因为深度学习是自动学习的,训练的过程也就是学习的过程,然而学的好坏需要进行验证,这时就需要验证集,也是通过验证集验证来判断学习(训练)的好坏,最终反馈给网络。接着这样循环进行,知道达到自己设置的epoch的大小结束。(训练——》验证——》训练——》验证…)

测试集:测试集是对训练好的模型进行测试。另外测试集和验证集可以相同,也可以不同。因为此时模型已经训练好了,使用什么数据都可以。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三少的笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值