题目:
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points
,其中
p
o
i
n
t
s
[
i
]
=
[
x
s
t
a
r
t
,
x
e
n
d
]
points[i] = [x_{start}, x_{end}]
points[i]=[xstart,xend] 表示水平直径在
x
s
t
a
r
t
x_{start}
xstart 和
x
e
n
d
x_{end}
xend之间的气球。你不知道气球的确切
y
y
y 坐标。
一支弓箭可以沿着 x x x 轴从不同点 完全垂直 地射出。在坐标 x x x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 x s t a r t x_{start} xstart, x e n d x_{end} xend, 且满足 x s t a r t ≤ x ≤ x e n d x_{start} ≤ x ≤ x_{end} xstart≤x≤xend,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。
给你一个数组 points
,返回引爆所有气球所必须射出的 最小 弓箭数 。
示例:
- 输入: p o i n t s = [ [ 10 , 16 ] , [ 2 , 8 ] , [ 1 , 6 ] , [ 7 , 12 ] ] points = [[10,16],[2,8],[1,6],[7,12]] points=[[10,16],[2,8],[1,6],[7,12]]
- 输出: 2 2 2
- 解释: 气球可以用2支箭来爆破:
- 在x = 6处射出箭,击破气球[2,8]和[1,6]。
- 在x = 11处发射箭,击破气球[10,16]和[7,12]。
解题思路:贪心算法
首先将数组按气球的起始位置进行排序,这样可以遍历判断气球是否重叠。若后一个气球的起始位置大于前一个气球的终止位置,说明两气球没有重叠,需要多射一支箭,将res++
,否则代表两者有重叠,更新后者的终止坐标为两个气球的终止坐标的较小值。
class Solution {
public:
static bool cmp(const vector<int>& a, const vector<int>& b){
return a[0] < b[0];
}
int findMinArrowShots(vector<vector<int>>& points) {
// 若数组为空,则返回0
if(points.size() == 0) return 0;
// 对数组按第一个元素大小进行从小到大排序
sort(points.begin(), points.end(), cmp);
// 若数组不空,则至少需要一支箭
int res = 1;
// 从前往后遍历
for(int i = 1; i < points.size(); i++){
// 若后一个气球的起始位置比前一个气球的终止位置还大,代表两个气球不相交,必须多用一支箭
if(points[i][0] > points[i - 1][1]) res++;
// 否则代表两者有重叠,更新后者的终止坐标
else points[i][1] = min(points[i][1], points[i - 1][1]);
}
return res;
}
};