BP神经网络算法原理推导(数学建模进阶算法/机器学习)

本文详细介绍了BP神经网络的原理,包括网络结构、符号说明、算法流程,以及数据预处理方法。通过2-3-2层网络模型举例,阐述了从数据归一化到网络训练的过程,最后讨论了BP网络在函数逼近、模式识别、分类和数据压缩等领域的应用。
摘要由CSDN通过智能技术生成

       BP神经网络(Back-Propagation Network)算法原理推导

    博主原创,随意转载~ 请注明出处:https://blog.csdn.net/weixin_40913261/article/details/82619840

  • 简介

       反向传播网络(Back-Propagation Network)简称BP网络,基于误差反向传播算法(BP算法)的一种三层前馈神经网络。

       以2-3-2BP网络模型为例:

 

  • 算法伪代码:

 

       输入:训练集D

                  学习率η

                  1:数据归一化(此处需根据数据实际情况以及算法要求进行数据预处理,“归一化”只是一种方法)

                  2:创建网络

                  3:训练网络

                        repeat for D

                        3.1:正向传播

                        3.2:反向传播

                         until for 达到结束条件

                  4:使用网络

                  5:数据反归一化

        输出:训练完成的BP神经网络

 

  • 算法详解

     网络结构

       如2-3-2层神经网络:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值