UnetLoaderGGUF `newbyteorder` was removed from the ndarray class in NumPy 2.0. Use `arr.view(arr.dty

问题描述

在使用flux的GGUF的时候遇到的这个问题。
请添加图片描述
问题很简单,就是numpy2没有这个函数,要将numpy降低到2.0之前的版本,或者改写GGUF的代码。

解决思路

降低numpy的版本

将numpy降低到1.26.4版本便可以使用。
请添加图片描述
如上图所示,先将pip.exe 拉到python相同的文件夹下面。
然后执行命令

.\python.exe .\pip install numpy==1.26.4

改写GGUF的代码

请添加图片描述
请添加图片描述

根据上图的路径,找到对应的文件,对照修改代码。

arr: npt.NDArray[Any] = self.data[offset:end_offs].view(dtype = dtype)[:count]
return (
            # self.data[offset:end_offs]
            # .view(dtype = dtype)[:count]
            # .newbyteorder(override_order or self.byte_order)
            arr.view(arr.dtype.newbyteorder(override_order or self.byte_order)) # <- Define new notation according to NumPy 2.0
        )

可以直接用上面的代码,替换掉return里面的内容。特别注意别忘了return上面的一排。

效果

请添加图片描述

`AttributeError: 'np.sctypes' was removed in the NumPy 2.0 release. Access dtypes explicitly instead.` 这个错误提示说明在NumPy 2.0版本中移除了`np.sctypes`这个属性,而这个属性是用于获取NumPy中所有数据类型的别名。在NumPy的早期版本中,可以通过`np.sctypes`来获取不同数据类型的分组,例如整数类型、浮点类型等。 从NumPy 2.0版本开始,这个属性不再可用,而是建议用户直接访问具体的`dtype`(数据类型)来获取相关的信息。如果你在使用NumPy时遇到了这个错误,可以按照以下步骤来解决: 1. 如果你需要获取特定类型的数据类型,可以直接使用`numpy.dtype()`函数,传入数据类型的名称或者类型代码。例如,获取整型的`dtype`可以使用`numpy.dtype('int')`或者`numpy.dtype(int)`。 2. 如果你的代码中使用了`np.sctypes`来获取所有浮点类型或整数类型的列表,你需要改用`numpy.typeDict`字典。例如,可以使用`list(numpy.typeDict['float'])`来获取所有浮点类型的列表。 3. 更新代码中所有引用`np.sctypes`的部分,确保它们使用了新的方法来访问所需的数据类型信息。 以下是一个简单的例子,展示了如何使用`numpy.dtype()`来获取不同数据类型的`dtype`对象: ```python import numpy as np # 获取整数类型的dtype对象 int_dtype = np.dtype('int') # 获取浮点数类型的dtype对象 float_dtype = np.dtype('float') # 打印dtype对象 print(int_dtype) print(float_dtype) ``` 在处理旧代码或者文档时,需要注意这类改变,并及时更新代码或学习新的用法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值