最大子串和
该题和上学期老师讲的一模一样, 唯一不同的地方是需要记录结果的开始与结束位置;
我竟然花了接近2个小时的时间写;
思路(递归)
- 记录结果的数据结构:
最大子段和
串最左元素
串最右元素 - 分成3段:中间, 左边, 右边
- 递归得到左右的最大子串和
- 计算中间的最大子串和: 先由中向右扩展到最大串, 并记录最右边位置; 再由中向左扩展到最大串, 直到边界, 记录最左边位置.
- 返回 左 中 右 最大的一个子段和
代码
#include <stdio.h>
#include <stdlib.h>
#define MAX 10000
int s[MAX];
int begin, last;
typedef struct Trilple{
int sum;
int left;
int right;
}Trilple;
Trilple maxTril(Trilple t1, Trilple t2, Trilple t3);
Trilple maxSubSum(int start, int end){
Trilple tmpTril;
tmpTril.sum = 0;
tmpTril.left = 0;
tmpTril.right = 0;
if(start > end){
return tmpTril;
}
int mid = (start +end)/2;
int midSum,lmidSum ,rmidSum;
lmidSum = rmidSum = -1000000;
Trilple triL, triR, triM;
triL = maxSubSum(start, mid-1);
triR = maxSubSum(mid+1, end);
int i,j;
i = j = mid;
int ltmp,rtmp;
ltmp = rtmp = 0;
triM.right = triM.left = s[mid];
while(i >= start){
ltmp+= s[i];
if(ltmp > lmidSum){
lmidSum = ltmp;
triM.left = s[i];
}
i--;
}
while(j <= end){
rtmp+= s[j];
if(rtmp > rmidSum){
rmidSum = rtmp;
triM.right = s[j];
}
j++;
}
midSum = rmidSum+lmidSum-s[mid];
triM.sum = midSum;
return maxTril(triL, triM, triR);
}
Trilple maxTril(Trilple t1, Trilple t2, Trilple t3){
if(t1.sum > t2.sum){
if(t3.sum>t1.sum){
return t3;
}else{
return t1;
}
}else if(t1.sum<t2.sum){
if(t3.sum > t2.sum){
return t3;
}else{
return t2;
}
}else if(t1.sum == t2.sum){
if(t3.sum > t1.sum){
return t3;
}else{
return t1;
}
}
}
int main(void)
{
int n;
scanf("%d", &n);
int i=0 ;
int flag = 0;
while(i < n){
scanf("%d", &s[i++]);
if(s[i-1] >= 0){
flag = 1;
}
}
Trilple res;
if(flag == 0){
res.sum = 0;
res.left = s[0];
res.right = s[n-1];
}else
res = maxSubSum(0, n-1);
printf("%d %d %d", res.sum, res.left, res.right);
return 0;
}
花时间的地方:
- 对负数的处理, 在上述 思路 的第5步, 向两边扩展时, 若有负数就会出错( 若一直是负数, 则 ltmp(rtmp) < lmidSum(rmidSum) 恒成立, 就没有办法改变rmidSum 的值 );
解决方案 :给rmidSum(lmidSum)初始化为最小负数 - 比较左右中时, 没有注意相等时的顺序
总结
总的来说, 这道题还是比较简单,