fill-in-the-middle(FIM) 实现与简单应用

1 背景

传统训练的 GPT 模型只能根据前文内容预测后文内容,但有些应用比如代码生成器,需要我们给出上文和下文,使模型可以预测中间的内容,传统训练的 GPT 就不能完成这类任务。

传统训练的 GPT 只能根据上文预测下文
在这里插入图片描述

使用 FIM 训练的能够正确填充中间部分
在这里插入图片描述
FIM 是一种新的训练技巧,使得 GPT 类模型能够根据上下问填充中间部分。

2 原理

通过添加特殊 token, 使得训练数据包含上下文内容
原文
在这里插入图片描述
在这里插入图片描述
调换 suffix 与 middle 位置,此为 PSM 模式
在这里插入图片描述
另外还有 SPM 模型。

3 代码

import os
import random
import numpy as np
import torch
import numpy as np
import tiktoken

## Adapted from https://github.com/bigcode-project/Megatron-LM/blob/6c4bf908df8fd86b4977f54bf5b8bd4b521003d1/megatron/data/gpt_dataset.py
def permute(
    sample,
    np_rng,
    suffix_tok_id,
    prefix_tok_id,
    middle_tok_id,
    pad_tok_id,
    fim_rate=0.5,
    fim_spm_rate=0.5,
    truncate_or_pad=False,
):
    """
    Take in a sample (list of tokens) and perform a FIM transformation on it with a probability of fim_rate, using two FIM modes:
    PSM and SPM (with a probability of fim_spm_rate).
    """
    if np_rng.binomial(1, fim_rate): # 二项分布,以 fim_rate 的概率生成 1, 1-fim_rate的概率生成 0
        boundaries = list(np_rng.randint(low=0, high=len(sample) + 1, size=2)) # 随机生成两个位置索引, 数值中间部分为 middle
        boundaries.sort()
        # 分割前、中、后
        prefix = np.array(sample[: boundaries[0]], dtype=np.int64)
        middle = np.array(sample[boundaries[0] : boundaries[1]], dtype=np.int64)
        suffix = np.array(sample[boundaries[1] :], dtype=np.int64)
        
        if truncate_or_pad:
            new_length = suffix.shape[0] + prefix.shape[0] + middle.shape[0] + 3
            diff = new_length - len(sample)
            if diff > 0:
                if suffix.shape[0] <= diff: # suffix 后缀长度小于 diff/3, 原样返回
                    return sample, np_rng
                suffix = suffix[: suffix.shape[0] - diff] # 裁剪后缀使sample长度保持不变
            elif diff < 0:
                suffix = np.concatenate([suffix, np.full((-1 * diff), pad_tok_id)]) # (-1 * diff) 负负得正
        # 内部以 fim_spm_rate 的概率做 spm 变换,以 1-fim_spm_rate 的概率做 PSM 变换
        if np_rng.binomial(1, fim_spm_rate):
            # SPM (variant 2 from FIM paper)
            new_sample = np.concatenate(
                [
                    [prefix_tok_id, suffix_tok_id],
                    suffix,
                    [middle_tok_id],
                    prefix,
                    middle,])
        else:
            # PSM
            new_sample = np.concatenate(
                [
                    [prefix_tok_id],
                    prefix,
                    [suffix_tok_id],
                    suffix,
                    [middle_tok_id],
                    middle,])
    else:
        # 不做任何改变。 don't do FIM preproc
        new_sample = sample
    return list(new_sample), np_rng
# 特殊字符
FIM_PREFIX = "<fim-prefix>"
FIM_MIDDLE = "<fim-middle>"
FIM_SUFFIX = "<fim-suffix>"
FIM_PAD = "<fim-pad>"
# bpe分词器
tokenizer = tiktoken.get_encoding("gpt2")
# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
    # If you're changing the set of special tokens, make sure to use a different name
    # It should be clear from the name what behaviour to expect.
    name="cl100k_base_im",
    pat_str=tokenizer._pat_str,
    mergeable_ranks=tokenizer._mergeable_ranks,
    special_tokens={
        **tokenizer._special_tokens,
        # 添加特殊字符
        FIM_PREFIX: 50300,
        FIM_MIDDLE: 50400,
        FIM_SUFFIX: 50500,
        FIM_PAD: 50600,
    })

在这里插入图片描述

# 获取特殊符号id
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = (enc._special_tokens[tok] for tok in [FIM_SUFFIX, FIM_PREFIX, FIM_MIDDLE, FIM_PAD])
np_rng = np.random.RandomState(seed=0) # rng state for FIM
# 测试
sample = list(np.random.randint(0 , 100, (10, )))
_list = []
for i in range(10):
    tmp = permute(
        sample,
        np_rng,
        suffix_tok_id,
        prefix_tok_id,
        middle_tok_id,
        pad_tok_id,
        fim_rate=0.5,
        fim_spm_rate=0.5,
        truncate_or_pad=True,)
    _list.append(tmp[0])

在这里插入图片描述

参考:
Efficient Training of Language Models to Fill in the Middle
loubnabnl/santacoder-finetuning
gpt_dataset.py
tiktoken/core.py
Code Llama — A Comprehensive Overview
Why your AI Code Completion tool needs to Fill in the Middle

### 大语言模型FIM格式说明 #### FIM任务定义 在大语言模型的应用场景中,FIMFill-In-the-Middle)是一种特定的任务形式,在这种任务里,用户能够给出一段文本的开头部分作为前缀以及结尾部分作为后缀(如果有的话),而模型则负责填充位于两者之间缺失的部分[^2]。 #### 数据集构建方式 为了使模型适应于执行FIM任务,数据集通常会按照如下方式进行构造: - **输入序列**:由三部分组成——`<prefix><mask_token><suffix>`。这里`<prefix>`代表原始句子中的前面一部分;`<mask_token>`是一个特殊的标记符用来指示待填补的位置;`<suffix>`则是原句子里后面那一段。 - **目标序列**:即完整的未被遮蔽过的原文本片段。 通过这种方式准备的数据可以帮助训练后的模型学会如何依据上下文线索去推测并生成合理的中间内容。 #### 应用实例展示 下面将以Python代码的形式简单模拟一次基于FIM模式下的文本补全过程: ```python from transformers import pipeline, set_seed set_seed(42) fill_mask = pipeline( "fill-mask", model="distilroberta-base", # 使用DistilRoBERTa基础版作为示范 tokenizer="distilroberta-base" ) text_prefix = "The capital of France is" text_suffix = ". It has a rich history and culture." result = fill_mask(f"{text_prefix} [MASK] {text_suffix}") for res in result: print(res['token_str'], end=' ') ``` 这段脚本创建了一个名为`fill_mask`的对象,该对象利用了预训练好的Transformer架构之一—DistilRoBERTa来完成填词工作。当运行此程序时,将会尝试找到最适合替换掉`[MASK]`位置上的单词或短语,从而形成连贯的一句话。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值