ARIMA(自回归滑动平均差分整合移动平均模型)是一种常用的时间序列预测模型。在使用ARIMA模型进行预测之前,我们需要选择合适的参数p、d和q来构建模型。本文将介绍ARIMA模型参数选择的方法,并提供Python代码示例。
首先,让我们了解一下ARIMA模型的三个参数:
-
p(AR阶数):表示模型中的自回归项数。它是通过自相关图(ACF)和偏自相关图(PACF)来确定的。ACF表示时间序列与其自身滞后版本之间的相关性,而PACF表示在其他滞后项的影响下,两个时间序列之间的相关性。
-
d(差分阶数):表示用于使时间序列平稳化的差分次数。通常,我们需要对时间序列进行差分,直到其变为平稳序列。平稳序列是指均值、方差和自协方差不随时间变化的序列。
-
q(MA阶数):表示模型中的滑动平均项数。它也是通过ACF图来确定的。
下面是使用Python进行ARIMA模型参数选择的步骤:
步骤1:导入所需的库和数据
import pandas as p