ARIMA模型参数选择与Python实现

369 篇文章 ¥49.90 ¥99.00
本文介绍了ARIMA模型的参数p、d和q的选择方法,通过自相关图和偏自相关图确定AR和MA阶数,以及如何在Python中进行时间序列的差分和模型拟合,为预测提供基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARIMA(自回归滑动平均差分整合移动平均模型)是一种常用的时间序列预测模型。在使用ARIMA模型进行预测之前,我们需要选择合适的参数p、d和q来构建模型。本文将介绍ARIMA模型参数选择的方法,并提供Python代码示例。

首先,让我们了解一下ARIMA模型的三个参数:

  1. p(AR阶数):表示模型中的自回归项数。它是通过自相关图(ACF)和偏自相关图(PACF)来确定的。ACF表示时间序列与其自身滞后版本之间的相关性,而PACF表示在其他滞后项的影响下,两个时间序列之间的相关性。

  2. d(差分阶数):表示用于使时间序列平稳化的差分次数。通常,我们需要对时间序列进行差分,直到其变为平稳序列。平稳序列是指均值、方差和自协方差不随时间变化的序列。

  3. q(MA阶数):表示模型中的滑动平均项数。它也是通过ACF图来确定的。

下面是使用Python进行ARIMA模型参数选择的步骤:

步骤1:导入所需的库和数据

import pandas as p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值