欢迎关注博主的公众号:happyGirl的异想世界。有更多干货还有技术讨论群哦~
举例说明一些机器学习算法中的普通参数和超参数:
机器学习算法 | 普通参数举例 | 超参数举例 |
决策树 | 在每个节点上选择的输入变量、每个节点上选择的阈值 | 每个叶节点所应包括的最少数据量,训练后的剪枝(pruning)策略 |
随机森林 | 同上 | 决策树的数量,输入变量的数量 |
支持向量机 | 支持向量(support vector)的选择,每个支持向量的拉格朗日乘数 | 核(kernel)的选择,正则化常量C和核函数的超参数 |
神经网络 | 每层的权重 | 隐藏层的数量,每层的神经元数量,训练的epoch,学习率等 |
K近邻 | 近邻K的选择,距离函数的选择,初始化选择等 | |
朴素贝叶斯 | 每一类的先验概率 | 数值属性用核数密度估计量或正态分布,核密度估计量的窗口宽度 |
[描述来源:Luo G. (2016). A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Network Modeling Analysis in Health Informatics and Bioinformatics. 5:18.]
模型根据数据自动学习出的变量,就是参数。比如,深度学习的权重,偏差等。
超参数一般是根据经验确定的变量,用来确定模型的一些参数,超参数不同,模型是不同的。在深度学习中,超参数有:学习速率(lr),迭代次数,层数,每层神经元的个数等等。