之前借助简单搭建的cnn模型执行验证码的分类任务训练,https://blog.csdn.net/weixin_41044499/article/details/94382397,由于缺乏训练多层神经网络的设备和条件,准确率并不高。这里通过借助vgg19的模型来抽取验证码图片的特征,再增加一个全连接层,做简单的分类问题。
相比多种调取现有cnn模型的方案,使用keras的vgg16直接操作的方式,安装和使用最为方便。
方法参考了这篇文章 https://blog.csdn.net/data_scientist/article/details/79041240
# -*- coding:utf-8 -*- # /usr/bin/python from keras.applications.vgg19 import VGG19 from keras.preprocessing import image from keras.applications.vgg19 import preprocess_input from keras.models import Model import numpy as np base_model = VGG19(weights='imagenet') for layer in base_model.layers: print(layer.name) model = Model(inputs=base_model.input, outputs=base_model.get_layer('predictions').output) data = np.empty((300,1000),dtype