迁移学习实现验证码预测

之前借助简单搭建的cnn模型执行验证码的分类任务训练,https://blog.csdn.net/weixin_41044499/article/details/94382397,由于缺乏训练多层神经网络的设备和条件,准确率并不高。这里通过借助vgg19的模型来抽取验证码图片的特征,再增加一个全连接层,做简单的分类问题。

相比多种调取现有cnn模型的方案,使用keras的vgg16直接操作的方式,安装和使用最为方便。

方法参考了这篇文章 https://blog.csdn.net/data_scientist/article/details/79041240

# -*- coding:utf-8 -*-
# /usr/bin/python
from keras.applications.vgg19 import VGG19
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np

base_model = VGG19(weights='imagenet')
for layer in base_model.layers:
    print(layer.name)
model = Model(inputs=base_model.input, outputs=base_model.get_layer('predictions').output)
data = np.empty((300,1000),dtype
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值