走向解密模拟布局的艺术:通过迁移学习进行布局质量预测

摘要

尽管在模拟布局自动化方面付出了巨大的努力,但在实际设计流程中却很少采用。 传统的模拟布局综合工具使用各种启发式约束来修剪设计空间以确保布局后性能。 然而,由于缺乏对电路性能的模型映射布局属性,这些方法提供有限的保证和较差的通用性。 在本文中,我们试图通过定量统计方法缩短模拟电路布局后性能建模的差距。 我们利用最先进的自动模拟布局工具和行业级模拟器以自动方式生成标记的训练数据。 我们提出了一个 3D 卷积神经网络 (CNN) 模型,以使用精心设计的放置特征来预测相对放置质量。 为了实现实际使用的数据效率,我们进一步提出了一种迁移学习方案,该方案大大减少了所需的数据量。 我们的模型将使实际布局设计流程的早期修剪和有效设计探索成为可能。 实验结果证明了我们的方法在不同的运算跨导放大器 (OTA) 设计中的有效性和通用性。

介绍

模拟和混合信号 (AMS) 集成电路 (IC) 广泛用于许多新兴应用,包括消费电子、汽车和物联网。 这些应用日益增长的需求要求更短的设计周期和上市时间。 随着技术的不断扩展,敏感的版图相关效应使稳健和高性能的模拟版图设计成为越来越大的挑战 [1]。
实现模拟电路布局是一项大量手动、耗时且容易出错的任务。 人工布局设计师按照从经验中学到的布局约定绘制布局。 尽管这些布局约定提供了良好的指导方针,但它们不能直接确保或优化后期布局性能。 设计收敛通常需要耗时的反复试验和错误。 另一方面,自动化模拟布局生成的努力已经持续了几十年 [2]。 然而,在实际的模拟设计流程中几乎没有被采用。 这部分是由于工具不可用,更重要的是,工具提供的性能保证有限。
传统的模拟布局综合工具依赖于各种启发式约束,而不是对布局后性能的显式优化。 启发式约束基于人工布局技术,并在布局和布线期间强制执行。 然而,基于启发式约束的方法在实际设计流程中是有问题的; 手工约束通常在可解释性和可信度方面存在问题,并且在满足不同场景的详细需求方面缺乏灵活性和通用性。 如果没有直接模型来预测布局后性能,模拟布局更多地被认为是一门顽固地挑战所有自动化尝试的艺术 [3]。

背景

以前关于模拟性能建模的工作旨在模拟器件参数对电路性能的影响[4]-[6]。 大多数提出的建模技术都是预先布局的; 即,它们在原理图级别对模拟设计行为进行建模。 先前针对布局级别建模性能的工作推导出方程来分析各种布局效果。 兰帕特等人。 [7] 对电路性能使用敏感性分析并估计互连寄生效应和失配效应。 欧等人。 [8] 采用类似的方法来减轻布局相关的影响,以提高电路的鲁棒性。 然而,随着器件尺寸的增加,寄生参数和性能失配的分析灵敏度估计不再准确。 因此,在给定布局和预期的布局后性能之间建立映射的建模框架势在必行,但仍然具有挑战性。
另一方面,最近的研究表明,在将机器学习技术应用于建模抽象布局指南和指导自动物理设计方面取得了成功。 [9] 的工作使用 CNN 模型来预测来自早期宏布局解决方案的路由后结果,并且 [10] 预测来自标准单元布局的可路由性。 类似的成功也显示在模拟布局自动化中,将生成机器学习模型应用于模拟路由 [11] 和油井生成 [12]。 虽然数字领域的工作通常利用**自动布局流程来生成高质量的训练数据,**但 [11]、[12] 的工作依赖于手动模拟布局进行训练。 获得手工布局的困难可能解释了在模拟布局质量建模方面缺乏研究。

在本文中,我们提出了一种新方法来缩短模拟电路布局后性能建模的差距。 我们建议在给定一定的设计空间的情况下,以一定的布局后性能作为定量指标来预测相对布局质量。 成功的质量预测将为快速设计空间探索提供早期设计修剪。 我们提出的方法利用自动流来生成高质量的标记训练数据和卷积神经网络 (CNN) 以及精心设计的布局特征来预测后期布局性能。 为了克服获得标记训练数据的高成本,我们进一步提出了一种迁移学习方案,该方案减少了不同设计设置下所需的数据量。 我们的主要贡献总结如下:

(1) 根据作者的认识,首次提出了快速设计空间探索的布局质量预测模型。
(2) 提出了一种自动生成模拟布局训练数据并提取与布局质量相关的有效布局特征的方法。
(3) 我们应用具有三维卷积层的坐标通道来改进模型性能。
(4) 我们提出了一种转移学习方案,该方案显著减少了训练期间所需的数据量,同时仍然实现了有效的设计修剪。
本文的其余部分组织如下。第二部分给出了设计空间修剪的背景,并制定了质量预测任务;第三部分详细说明了我们提出的定位特征和三维CNN模型的提取方法;第四部分展示了迁移学习的实验结果;第五节是论文的结论。

基础知识

在本节中,我们首先介绍模拟布局综合流程中设计空间修剪的背景。 II-A。 然后,我们在 Sec 中制定了我们的放置质量预测任务。 II-B。

A. 模拟布局综合中的设计空间修剪

为了满足布局后性能要求并实现设计收敛,在实际布局综合流程的开发中需要来自布局后性能的反馈回路。 [13] 的工作提出了一个框架,如果不满足布局后性能指标,则调整电路的大小。 我们假设电路已经精心设计,并将我们的范围仅限于探索布局实现的设计空间。 因此,设计探索将根据模拟的反馈结果在设计空间中积极寻找令人满意的布局实现。 性能驱动的模拟布局综合工具以前的工作试图通过将布局对性能的影响分析嵌入成本函数来减少设计空间。 然而,随着器件尺寸的增加和布局相关效应的复杂性,这些方法不再准确。

B. 动机和问题形成

设计探索的一个主要瓶颈是后期布局模拟所涉及的运行时间。 为了获得最终的仿真结果,需要提取布局布线后生成的布局设计的寄生参数,然后用晶体管级仿真进行评估。 模拟的运行时间通常在单个迭代周期中占主导地位。 因此,在设计周期的早期步骤中对布局后性能质量的有效预测将修剪设计空间并允许更快的探索。

出于修剪设计空间的动机,我们建议在放置步骤之后用中间结果来预测布局质量。 我们将布局质量定义为相对后期布局性能与某些给定设计空间中的性能分布。 如果将我们的任务制定为以下分类问题:给定器件边界框、布局坐标和引脚位置的电路​​和中间布局解决方案,预测是否在性能质量方面对设计进行修剪。 换句话说,目标是丢弃在早期设计阶段预期会产生较差的布局后性能结果的布局候选。

布局质量预测

在本节中,我们将详细解释我们预测放置质量的方法。 我们首先在 Sec. 中解释了使用自动布局生成器生成标记数据的方法。 III-A。 从放置结果中提取的特征的详细信息在第二节中介绍。 III-B。 然后,我们在 Sec 中介绍了用于坐标相关机器学习任务的嵌入坐标通道。 III-C 和我们在 Sec 中的 3D CNN 模型。 III-D。 最后,我们在 Sec 中简要概述了我们的迁移学习方案。 III-E。

A. 数据生成和标签

我们使用自动布局生成器 [14] 生成用于训练和测试的布局。 我们对生成的所有布局在布局和布线中强制实施对称约束。 对称约束和临界网络由电路设计者提供。 使用分析放置引擎的目的是最大限度地降低以下成本:
在这里插入图片描述
其中 fWL 是总加权半周线长 (HPWL),fBND 是违反基于纵横比和空白空间比的设计理想边界的惩罚项。 在生成相同设计的不同布局时,我们保持 fBND 固定并更改 fWL 中的净权重。 我们通过选择不同的关键网络组合以获得更高的权重值来生成不同的净权重。
由于不同模拟功能构建块的性能指标和布局设计空间存在显着差异,因此我们将研究限制在运算跨导放大器 (OTA) 设计上。 评估的统计数据和性能指标如表 I 所示。OTA1 和 OTA2 具有相同的电路原理图,但尺寸不同。 所有生成的布局都是 LVS(布局与原理图)干净的。
在这里插入图片描述
在获得布局后模拟结果后,我们根据性能的相对排名对每个数据点的质量进行标记。 图 1 显示了 OTA1 的输入参考偏移(绝对值)的分布。 如果性能处于整个数据集分布的最差 25%,则将布局标记为被修剪。 图 2 显示了 OTA1 的最差和最佳布局及其对应的标签。
在这里插入图片描述

B.放置特征提取

模拟电路行为的复杂性和复杂性使得从布局中提取与性能相关的特征极为重要。 器件放置对性能的影响在于放置位置和电路拓扑。 例如,与负载相比,差分输入对的失配对偏移的影响更大。 因此,为了确保一个好的和通用的模型,提取的特征必须既容易扩展到不同的电路拓扑,又能够编码有效的布局信息。 为了利用卷积神经网络在计算机视觉任务中的成功,我们将中间布局放置结果表示为 2D 图像。 我们不是将整个电路布局压缩到一个图像中,而是根据电路拓扑将设备分成不同的图像。 对于OTA电路,我们建议根据功能将电路分为以下子电路:
• 第一阶段的第一阶段设备。 这包括差分输入、负载和尾部晶体管。 • Other Stages 其他放大器级中的设备。 • 反馈补偿反馈回路中的无源器件,例如米勒电容。
• CMFB 共模反馈电路。 • 电流镜中的偏置装置。 • Routing Demand 每个网络的聚合引脚边界框。
图 3 显示了 OTA3 的子电路。
在这里插入图片描述
设备被抽象成矩形并根据放置结果缩放成图像。 在我们所有的实验中,图像尺寸选择为 64*64。 我们进一步为表 II 中所示的设备类型编码不同的图像强度。 图 4 显示了图 2(b)中布局的相应提取的放置特征图像。

C. 嵌入坐标通道

传统的 CNN 已被证明在学习笛卡尔坐标和图像像素空间中的坐标之间的映射方面无效。 刘等人。 [15]通过使用额外的通道直接嵌入坐标信息,极大地提高了模型在目标检测等位置敏感任务上的性能。 由于放置质量将直接受到匹配设备之间的距离的影响,我们采用类似的解决方案,在 Sec. 中提取的特征图像中添加额外的坐标通道。 III-B。 算法 1 展示了将位置特征嵌入额外坐标通道的方法。

D. 3D 卷积神经网络

卷积神经网络主要应用于 2D 图像,作为特征构建的一类深度模型。 传统的 2D CNN 从前一层的特征图上的局部邻域提取特征。 正式地,给定第 i 层第 j 个特征图中位置 (x, y) 处的像素值,卷积层输出
在这里插入图片描述
其中 σ(·) 是激活函数,bij 是特征图的偏差,m 是这一层特征图集的索引,wpq 不同放置子电路之间的相对位置信息。 因此,输出特征是所有内核映射与前一层图像的加权和的激活输出。
三维卷积层被首次提出将空间和时间信息的动作识别的视频。与2 d cnn的卷积核是一个2 d地图,三维卷积是通过卷积3 d内核一起堆积形成的多维数据集多个连续的图像:
在这里插入图片描述
其中 r 是第三维的值。 从视频中跨时间捕获的图像被堆叠以形成用于动作识别的 3D 输入张量 [16]。 [17]、[18] 的工作进一步证明了 3D CNN 在捕获空间 3D 体积数据特征方面的有效性。
在这里插入图片描述
我们建议使用 3D CNN 来有效地捕获不同放置子电路之间的相对位置信息。 图 5 显示了用于放置质量预测的 3D CNN 网络的整体模型。 如 Sec.III-C 所述,每个提取的放置特征图像都被增强为具有坐标通道的特征集。 然后为每个具有 2D 卷积层的特征集分别提取初始特征。 然后将输出堆叠以形成 3D 张量。 3D 张量被馈送到 3D CNN 以进行放置质量预测。

E. 迁移学习

迁移学习代表了一组技术,可以将从源域学到的知识迁移到目标域[19]。 在我们的设置中,我们希望将学习模型与来自一个设计的所有数据一起转移,以预测另一个电路设计的布局质量。 我们假设虽然不同 OTA 电路的设计空间可能不同,但有一些与布局质量相关的布局特征可以在源域和目标域之间共享。 我们的迁移学习方案是在归纳迁移学习设置中,其中标记数据在源域和目标域中都可用。 该模型首先在有大量标记数据的源域上进行训练。 然后使用目标域中有限的标记数据对预训练模型进行微调。 这种方法允许模型保留从源域学习到的有用特征,并适应与目标域相关的特定任务。

实验结果

我们在 Python 中实现了所提出的放置特征提取和 3D CNN 模型。 所有布局均采用 TSMC 40nm 技术生成,提取寄生效应Calibre PEX,并使用 Cadence Spectre 进行模拟。 对于我们所有的实验,我们选择 20% 的数据(大约 3200 个布局)作为训练期间从未观察到的测试集。 数据集和特征提取是开源的。

A. 评估指标

对于我们的应用程序设置,我们使用错误遗漏率 FOR 作为关键性能指标:
在这里插入图片描述
其中 FN 是未修剪的不良设计的数量,TN 是正确选择探索的设计。 错误遗漏率 (FOR) 衡量不良设计对设计探索的泄漏。 如果不进行任何修剪,任何不好的设计都不会被过滤掉,我们的 FOR 为 25%。 我们还在结果中报告了准确度、精确度、召回率和 F1 分数。 良好的布局质量预测将具有高精度、高精度和低 FOR。

B.基线模型

和CNN架构比较我们使用OTA1的平衡标记数据来训练迁移学习的基线模型。类似于Sec.Iii-a中描述的标记方法,我们创建了一个平衡数据,其中性能最差的第25个百分位布局标记为1,最佳的第25个为0。直观地说,这是将最佳和最差的位置暴露给机器学习模型。我们尝试使用不同的神经网络架构。nofeat表示将放置结果压缩为单个图像,而feat则将不同的子电路分离为多个图像并嵌入额外的坐标通道。3D是提出的3D神经网络体系结构,而2D则用2D替换所有卷积滤波器。表III比较了不同体系结构模型的训练和测试准确性。提出的3D CNN特征提取达到了最佳的测试精度。

C. 有限数据的迁移学习

我们对 Sec. 中提出的迁移学习方案进行了实验。 III-E。 对于迁移学习结果,我们报告测试集在降低学习率的训练后的评估指标,并与再训练进行比较。 表 IV 报告了迁移学习的结果。 训练比率 α 定义为使用的训练数据相对于整个数据集的百分比。 使用整个训练集的训练比率为 0.80,因为剩余的 20% 保留用于测试。 0.00 的训练比率表示直接使用预训练的基线模型,无需对任何目标域数据进行微调。 我们只报告 α = 0.80 的 OTA1,因为基线是在这个设计上训练的。 根据结果​​,我们进行以下观察:
• 与随机初始化的再训练相比,迁移学习显着改善了结果。 • 预测的性能和修剪的有效性随着训练数据量的增加而增加。 • 即使只有160 个布局的有限训练数据,布局质量预测也非常有效。 • 直接应用基线模型而不进行微调是不理想的,因为目标域和源域的数据分布可能会有很大差异。

通过对 10% 的数据进行训练,我们提出的迁移学习方法可以达到 8.95% 的平均 FOR 值,而在基线设置中为 22.91%。 在 OTA1 上,与仅使用 1% 数据的基线相比,我们的方法将 FOR 显着降低了 57%。 所展示的数据效率反过来又导致勘探成本的显着降低。 随着我们的模型达到 90% 的准确率,我们可以修剪 20% 以上的低性能质量设计空间,同时在很大程度上允许探索高质量的设计。

D. 少样本示例的迁移学习

在这里插入图片描述

在设计探索的实际情况下,获得即使是一百个布局的性能结果也可能很昂贵。 此外,只有在充分探索设计空间之前,才能知道性能分布。 为了进一步证明模型对早期设计修剪的有效性,我们仅使用来自目标域的几个示例来实验迁移学习。 我们的实验设置如下。 对于每个实验,我们随机抽取 16 个布局作为迁移训练数据。 我们根据它们在训练集中的相对排名而不是整个设计空间来标记训练数据。 然后我们根据训练分布中的临界值重新标记测试集。 测试集中阳性数据的数量可能与 25% 相差很大。 因此,我们模型的置信度将在训练数据的性能分布而不是整个设计空间上进行测试。 我们对每个转移目标设计重复我们的实验 100 次。 图 6 显示了少样本迁移学习的结果。 黑线绘制了随机设计修剪的错误遗漏率。 在数据极其有限的情况下,通过少样本学习获得的改进与迁移任务高度相关。 从相同设计但不同尺寸 (OTA2) 转移知识非常有效。 对于具有不同性能指标(OTA4)的不同设计,few-shot 迁移学习的改进有限。

五、结论

在本文中,我们提出了一种通过预测布局质量来进行早期布局设计修剪的新方法。 我们的 3D CNN 模型具有精心设计的放置功能,提供了增强的灵活性,能够推广到不同的 OTA 设计。 我们进一步提出了一种迁移学习方案,该方案大大减少了所需的标记数据量,与重新训练模型相比,错误遗漏率降低了高达 57%,同时仅使用了 1% 的标记数据。 使用我们的模型,我们可以有效地修剪 20% 以上的低性能质量的设计空间。

关注

  1. 自动化模拟布局生成的努力已经持续了几十年 [2]在实际的模拟设计流程中几乎没有被采用。 这部分是由于工具不可用,更重要的是,工具提供的性能保证有限。
  2. 使用自动布局生成器 [14] 生成用于训练和测试的布局
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值