线性代数MIT 18.06 记录(二十二)对角化和A的幂

重点

在这里插入图片描述

对角化

把A的特征向量 放到一起得到 矩阵S。
和A相乘:
在这里插入图片描述
再分解一下:
在这里插入图片描述
只要A有n个不相关的特征向量,那么下面公式就成立:
在这里插入图片描述

Λ \Lambda Λ就是一个对角矩阵

那么A^2呢?

在这里插入图片描述
公式还是那么得美妙

更一般地:
在这里插入图片描述
特征值和特征向量给了我们一个很好的理解矩阵幂的方法

在这里插入图片描述

可对角化条件

A is sure to have n eigen values(and be diagonaligable) if all the λ \lambda λ are different (no repeadted λ \lambda λs)

特殊情况

如果矩阵原先就是对角的,那么 Λ \Lambda Λ和原矩阵一样

普遍情况

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值