重点
对角化
把A的特征向量 放到一起得到 矩阵S。
和A相乘:
再分解一下:
只要A有n个不相关的特征向量,那么下面公式就成立:
Λ \Lambda Λ就是一个对角矩阵
那么A^2呢?
公式还是那么得美妙
更一般地:
特征值和特征向量给了我们一个很好的理解矩阵幂的方法
可对角化条件
A is sure to have n eigen values(and be diagonaligable) if all the λ \lambda λ are different (no repeadted λ \lambda λs)
特殊情况
如果矩阵原先就是对角的,那么 Λ \Lambda Λ和原矩阵一样