MIT 18.06 linear algebra 第二十二讲笔记

MIT 18.06 linear algebra 第二十二讲笔记


第二十二课课程笔记

  • Diagonaliging a matrix S1AS=Λ S − 1 A S = Λ
  • Powers of A | equation Uk+1=AUk U k + 1 = A U k

假设 A A n个独立的特征向量,现在我们把它们作为列向量塞进矩阵 S S AS=A[x1x2xn]=[λ1x1λ2x2λnxn]=

[x1x2xn]λ1000λ2000λn=SΛ [ x 1 x 2 ⋯ x n ] [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ] = S Λ
进而我们可以得出 S1AS=Λ S − 1 A S = Λ 。这个过程称为矩阵的对角化。 A=SΛS1 A = S Λ S − 1 这是另一种矩阵分解的方式。对角阵即特征值沿对角线排列组成的矩阵。


如果 Ax=λx A x = λ x ,那么 A2x=λAx=λ2x A 2 x = λ A x = λ 2 x A2=SΛS1SΛS1=SΛ2S1 A 2 = S Λ S − 1 S Λ S − 1 = S Λ 2 S − 1 ,继而 Ak=SΛkS1 A k = S Λ k S − 1 。当然这些成立的前提条件就是矩阵 A A 存在n个互相独立的特征值。如果不存在 n n 个相互独立的特征向量,矩阵就不能对角化。

如果Ak趋近于0,由于其可以被拆解为 SΛkS1 S Λ k S − 1 ,因此只有所有的 |λi|<1 | λ i | < 1 才行。

如果矩阵 A A n个不相同的特征值(无重复),那么 A A 一定有n个相互独立的特征向量,因此矩阵可以被对角化。存在重复的特征值,不一定不能被对角化。它有可能存在 n n 个相互独立的特征向量。

如果矩阵A就是对角阵,那么对其对角化有 A=Λ A = Λ


如果有下等式 Uk+1=AUk U k + 1 = A U k 。起始值为 U0 U 0 , U1=AU0 U 1 = A U 0 ,这种方程称之为一阶差分方程。首先我们可以把起始值 U0 U 0 写为 U0=C1x1+C2x2++Cnxn U 0 = C 1 x 1 + C 2 x 2 + ⋯ + C n x n 。又可以把 AU0 A U 0 写为 C1λx1+C2λx2++Cnλxn C 1 λ x 1 + C 2 λ x 2 + ⋯ + C n λ x n ,进而有 AkU0=C1λkx1+C2λkx2++Cnλkxn A k U 0 = C 1 λ k x 1 + C 2 λ k x 2 + ⋯ + C n λ k x n


再看一个关于斐波那契数列的例子:
0,1,1,2,3,5,8,13….,从第三项开始,每项的值等于前两项之和。我们用 F1,F2,F3,,Fn F 1 , F 2 , F 3 , … , F n 来表示斐波那契数列的每一项。根据规律有 Fk+2=Fk+Fk+1 F k + 2 = F k + F k + 1 。这时候就要用到一个小技巧了。我们可以看到这个递推公式是二阶差分方程,我们最好想办法将其转换为一阶差分方程。

解:令 Uk=[Fk+1Fk] U k = [ F k + 1 F k ] 。有 {Fk+2=Fk+1+FkFk+1=Fk+1 { F k + 2 = F k + 1 + F k F k + 1 = F k + 1 ,因而有 [Fk+2Fk+1]=[1110][Fk+1Fk] [ F k + 2 F k + 1 ] = [ 1 1 1 0 ] [ F k + 1 F k ]

求解矩阵 [1110] [ 1 1 1 0 ] 的特征值与特征向量,进而可以求得 λ=1±52 λ = 1 ± 5 2 [1λ11λ]x=0 [ 1 − λ 1 1 − λ ] x = 0 ,将 [λ1] [ λ 1 ] 就是特征向量,代入即可。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值