AI动作异常行为分析预警系统采用AI神经网络的学习算法,AI动作异常行为分析预警系统实时分析现场人员人体动作操作行为以及着装穿戴情况是否合规进行实时监测,AI动作异常行为分析预警系统通过统计和分析后实现人员违规行为实时监测预警提升现场人员合规操作规范,降低人员违规行为发生的概率,降低企业因人工误操作产生的损失以及现场人员人身安全风险,提升对现场人员监督的效率。

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

  • 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
  • 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
  • Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
  • Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

AI动作异常行为分析预警系统 YOLOv5_深度学习

随着社会的发展和科技水平的进步,大家对于厂区人员生产操作规范合规以及人员人身安全都越来越重视。而厂区传统的视频监控主要功能在于事后取证,无法起到预防人员违规操作行为预警风险的作用。传统安防视频监控越来越复杂,无法有效及时自动发现现场人员违规操作行为进行及时提醒预警。AI动作异常行为分析预警系统应运而生。

import torch
from torch import nn
from d2l import torch as d2l


class Reshape(torch.nn.Module):
    def forward(self, x):
        # 通过view函数把图像展成标准的Tensor接收格式,即(样本数量,通道数,高,宽)
        return x.view(-1, 1, 28, 28)

net = torch.nn.Sequential(
    Reshape(),
    # 第一个卷积块,这里用到了padding=2
    nn.Conv2d(1, 6, kernel_size=5, padding=2), 
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    
    # 第二个卷积块
    nn.Conv2d(6, 16, kernel_size=5), 
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    
    # 稠密块(三个全连接层)
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.

AI动作异常行为分析预警系统对车间内生产工作人员作业生产操作行为如上下交叉作业行为、生产作业操作设备行为等动作流程进行提前及时预警与监督。AI动作异常行为分析预警系统可以对现场人员作业操作行为是否规范实现7*24小时不间断主动监控,完成事前预警降低违规行为和损失。AI动作异常行为分析预警系统可以将厂区整体生产效率大大提高,通过规范现场人员作业操作行为来降低生产损失和其他违规风险。