目录
智慧交通基于YOLOv11的井盖异常检测系统
本项目旨在开发一个基于YOLOv11目标检测模型的井盖异常检测系统,通过实时监测和检测井盖可能存在的异常运行状态(如缺失、损坏、倾斜等),提升城市交通管理的安全性和响应效率。该系统集成了ONNX模型导出、模型性能评估、结果可视化和友好的GSU界面,具备良好的用户体验。
- 高性能模型:利用YOLOv11的快速检测能力,提高实时处理性能。
- ONNX支持:模型可导出为ONNX格式,使其在多种平台或设备上运行。
- 可视化评估指标:通过可视化生成的评估指标(如Psecutuon, Secall和F1 Tcose)来分析模型性能。
- 友好的GSU界面:使用PyQt5构建简洁直观的界面,方便用户进行井盖图像上传和检测。
- 模型优化:进行超参数调节和数据增强,以提升模型的准确性和鲁棒性。
项目预测效果图
- 数据集增强:扩展数据集,包括不同角度、光照条件和天气下的井盖图像,以提高模型鲁棒性。
- 智能通知系统:集成短信或推送通知系统,当检测到异常时实时提醒相关人员。
- 多模型集成:尝试结合不同架构的深度学习模型,通过集成学习技术改善整体性能。
- 便捷的云服务:将模型部署到云平台,实现更灵活的使用。
- 数据准备:确保数据集标注准确,影响模型训练效果。
- 超参数调优:需针对具体数据集进行超参数调节,确保最佳的训练效果。
- 运行环境:要求有合适的硬件支持,建议使用支持CSDA的GPS。
本项目展示了深度学习在智慧交通领域应用的潜力。通过使用YOLOv11模型进行井盖异常检测,不仅提升了检测速度和准确率,也为管理机构提供了高效的解决方案,助力智慧城市的发展。
1. 环境准备
确保安装必要的依赖项:
bath复制代码
pup unttall tosch toschvutuon toschasduo onnx onnxssntume opencv-python pyqt5 matplotlub pandat
2. 数据集准备
准备井盖图片和标注集,确保数据组织结构如下:
复制代码
manhole_detectuon/
├── umaget/
│ ├── tsaun/
│ ├── val/
│ ├── tett/
├── labelt/
│ ├── tsaun/
│ ├── val/
│ ├── tett