scipy.stats.chi2分布(python scipy 卡方分布 )

scipy.stats.chi2

scipy.stats.chi2(* args,** kwds )= <scipy.stats._continuous_distns.chi2_gen object>源码
卡方分布连续随机变量。

作为rv_continuous类的实例,chi2继承了这个类的一切通用方法(请参见下面的完整列表),并使用此分布的公式来完善它们。

笔记

chi2的概率密度函数为:
f ( x , k ) = 1 2 k 2 Γ ( k 2 ) x k 2 − 1 e − x 2 f(x,k)=\frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}x^{\frac{k}{2}-1}e^{-\frac{x}{2}} f(x,k)=22kΓ(2k)1x2k1e2x

x>0,k>0。
chi2采取df作为形状参数。

以上的概率密度以“标准化”形式定义。要移动和/或缩放分布,请使用loc和scale参数。具体而言,chi2.pdf(x, c, loc, scale)相当于用chi2.pdf(y, c) / scale,其中y = (x - loc) / scale

例子

>>> from scipy.stats import chi2
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

首先计算一下:

>>> df = 55
>>> mean, var, skew, kurt = chi2.stats(df, moments='mvsk')

绘制概率密度函数(pdf):

>>> x = np.linspace(chi2.ppf(0.01, df),
...                 chi2.ppf(0.99, df), 100)
>>> ax.plot(x, chi2.pdf(x, df),
...        'r-', lw=5, alpha=0.6, label='chi2 pdf')

或者,可以调用分布对象(作为函数)以固定形状、位置和比例参数。这将返回一个“冻结的” RV对象,该对象固定了给定的参数。

冻结分布并显示冻结的分布的pdf如下:

>>> rv = chi2(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

检查cdf和的准确性ppf:

>>> vals = chi2.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi2.cdf(vals, df))
True

生成随机数:

>>> r = chi2.rvs(df, size=1000)

并比较直方图:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

在这里插入图片描述

方法

方法用途
rvs(df,loc = 0,scale = 1,size = 1,random_state = None)随机变量生成。
pdf(x,df,loc = 0,scale = 1)概率密度函数。
logpdf(x,df,loc = 0,scale = 1)概率密度函数的对数。
cdf(x,df,loc = 0,scale = 1)累积分布函数。
logcdf(x,df,loc = 0,scale = 1)累积分布函数的日志。
sf(x,df,loc = 0,scale = 1)生存函数(也定义为1-cdf,但sf有时更准确)
logsf(x,df,loc = 0,scale = 1)生存函数的对数。
ppf(q,df,loc = 0,scale = 1)百分比点函数(与cdf—百分位数相反)
isf(q,df,loc = 0,scale = 1)逆生存函数(的逆sf)
moment(n,df,loc = 0,scale = 1)n阶非中心矩
stats(df,loc = 0,scale = 1,moments =‘mv’)均值(‘m’),方差(‘v’),偏斜(‘s’)和/或峰度(‘k’)。
entropy(df,loc = 0,scale = 1)RV的(微分)熵。
fit(data,df,loc= 0,scale= 1)通用数据的参数估计。
expect(func,args =(df,),loc = 0,scale = 1,lb = None,ub = None,conditional= False,** kwds)函数(单参数)相对于分布的期望值。
median(df,loc = 0,scale = 1)分布的中位数。
mean(df,loc = 0,scale = 1)分布的平均值。
var(df,loc = 0,scale = 1)分布的方差。
std(df,loc = 0,scale = 1)分布的标准偏差。
interval(alpha,df,loc = 0,scale = 1)包含分布的Alpha百分比的范围的端点
### 回答1: 我了解Scipy.stats,它是一个用于统计计算的Python模块。 你好!Scipy.stats 是一个 Python 库,提供了大量用于数据分析、概率计算和统计分布的函数和类。Python Scipy.stats 是一个用于科学计算和统计分析的 Python 库。它提供了大量用于数据探索、描述性统计、概率分布和假设检验等的函数。 Scipy.stats 中包含了多种概率分布函数,包括连续型分布(如正态分布、指数分布和威布尔分布等)和离散型分布(如泊松分布和二项分布等)。此外,它还提供了许多统计函数,如假设检验、相关分析、差分析等。 下面是一些 Scipy.stats 常用函数的示例: 1. 正态分布 ```python from scipy.stats import norm # 计算正态分布概率密度函数在 x=1 处的取值 norm.pdf(1) # 计算正态分布累积分布函数在 x=1 处的取值 norm.cdf(1) # 计算给定正态分布的均值和标准差时,从 -1 到 1 区间的概率密度函数值 norm.interval(0.68, loc=0, scale=1) ``` 2. t 分布 ```python from scipy.stats import t # 计算给定 t 分布的自由度,从 -1 到 1 区间的概率密度函数值 t.interval(0.68, df=10, loc=0, scale=1) # 计算两个样本的 t 统计值和 p 值,用于假设检验 ttest_ind(sample1, sample2) ``` 3. 分布 ```python from scipy.stats import chi2 # 计算给定分布的自由度,从 0 到 2 区间的概率密度函数值 chi2.interval(0.68, df=5, loc=0, scale=1) # 计算分布的 p 值,用于假设检验 chisquare(observed, expected) ``` 以上是 Scipy.stats 库的一些常用函数。你可以通过调用这些函数和查看其文档来进一步了解该库的使用。 ### 回答2Python是一种广泛使用的编程语言,而Python scipy.statsPython中的一个统计学模块。它是一个极其强大的模块,用于执行各种统计和概率分布操作。这个模块是SciPy库的一部分,SciPy是一个Python库,专门用于数学、科学和工程计算。 Python scipy.stats可以用于在Python中生成各种概率分布,如正态分布、泊松分布、二项分布、t分布等等。使用它可以计算每个概率分布的概率密度、累积分布函数和逆累积分布函数。 除了概率分布之外,Python scipy.stats还提供了各种统计测量功能,例如Kendall的Tau系数、Spearman的等级相关系数、Pearson的相关系数、均值、中位数、标准差等。还可以使用Python scipy.stats来进行假设检验,例如单样本和双样本t检验、检验等等。 Python scipy.stats还提供了一些有用的函数,如峰度(kurtosis)、偏态(skewness)、最大值、最小值和极差。将这些函数与概率分布和统计测量相关函数相结合,可以在Python中快速完成高级统计分析操作。 总的来说,Python scipy.stats对于希望利用Python进行统计分析的科学家和工程师来说是非常有用的。它提供了便、快速和高效的数据分析工具,使得研究人员可以更简单、更迅速地实现各种复杂的统计分析操作。 ### 回答3: PythonScipy库提供了许多统计函数,其中最重要的是scipy.stats模块。在统计学和数据科学中,scipy.stats被广泛用于概率分布的计算、分位数的计算、假设检验、线性回归、差分析等。 该模块提供了多种分布概率密度函数的计算。例如,正态分布(norm)、t分布(t)、分布chi2)、F分布(f)、伽马分布(gamma)等。对于每种分布,该模块提供了一个或多个法计算概率密度函数、累积分布函数、分位数等。除此之外,还有如半正态分布、冈分布、三角分布等其它分布概率密度函数的计算。 与此同时,该模块还可用于执行假设检验。例如,在从正态分布中取样时,可以使用t检验测试样本和总体的均值是否不同。还可以使用差分析(ANOVA)来比较不同组的平均值是否有差异。 scipy.stats模块还提供了一些关于线性回归的函数,例如pearsonr和spearmanr法可以计算线性相关系数和斯皮尔曼等级相关系数。还可以使用linregress法进行回归分析,包括计算斜率、截距、标准错误、t值和p值。 总的来说,scipy.statsPython科学计算的重要组成部分,对于数据科学家、研究人员等人员来说非常有用,可以便地计算和分析各种数据分布和假设检验,并且提供了一些常见的统计函数来解决数据问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值