scipy.stats.chi2
scipy.stats.chi2(* args,** kwds )= <scipy.stats._continuous_distns.chi2_gen object>
源码
卡方分布连续随机变量。
作为rv_continuous类的实例,chi2继承了这个类的一切通用方法(请参见下面的完整列表),并使用此分布的公式来完善它们。
笔记
chi2的概率密度函数为:
f
(
x
,
k
)
=
1
2
k
2
Γ
(
k
2
)
x
k
2
−
1
e
−
x
2
f(x,k)=\frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}
f(x,k)=22kΓ(2k)1x2k−1e−2x
x>0,k>0。
chi2采取df作为形状参数。
以上的概率密度以“标准化”形式定义。要移动和/或缩放分布,请使用loc和scale参数。具体而言,chi2.pdf(x, c, loc, scale)相当于用chi2.pdf(y, c) / scale,其中y = (x - loc) / scale
例子
>>> from scipy.stats import chi2
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
首先计算一下:
>>> df = 55
>>> mean, var, skew, kurt = chi2.stats(df, moments='mvsk')
绘制概率密度函数(pdf):
>>> x = np.linspace(chi2.ppf(0.01, df),
... chi2.ppf(0.99, df), 100)
>>> ax.plot(x, chi2.pdf(x, df),
... 'r-', lw=5, alpha=0.6, label='chi2 pdf')
或者,可以调用分布对象(作为函数)以固定形状、位置和比例参数。这将返回一个“冻结的” RV对象,该对象固定了给定的参数。
冻结分布并显示冻结的分布的pdf如下:
>>> rv = chi2(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
检查cdf和的准确性ppf:
>>> vals = chi2.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi2.cdf(vals, df))
True
生成随机数:
>>> r = chi2.rvs(df, size=1000)
并比较直方图:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
方法
方法 | 用途 |
---|---|
rvs(df,loc = 0,scale = 1,size = 1,random_state = None) | 随机变量生成。 |
pdf(x,df,loc = 0,scale = 1) | 概率密度函数。 |
logpdf(x,df,loc = 0,scale = 1) | 概率密度函数的对数。 |
cdf(x,df,loc = 0,scale = 1) | 累积分布函数。 |
logcdf(x,df,loc = 0,scale = 1) | 累积分布函数的日志。 |
sf(x,df,loc = 0,scale = 1) | 生存函数(也定义为1-cdf,但sf有时更准确) |
logsf(x,df,loc = 0,scale = 1) | 生存函数的对数。 |
ppf(q,df,loc = 0,scale = 1) | 百分比点函数(与cdf—百分位数相反) |
isf(q,df,loc = 0,scale = 1) | 逆生存函数(的逆sf) |
moment(n,df,loc = 0,scale = 1) | n阶非中心矩 |
stats(df,loc = 0,scale = 1,moments =‘mv’) | 均值(‘m’),方差(‘v’),偏斜(‘s’)和/或峰度(‘k’)。 |
entropy(df,loc = 0,scale = 1) | RV的(微分)熵。 |
fit(data,df,loc= 0,scale= 1) | 通用数据的参数估计。 |
expect(func,args =(df,),loc = 0,scale = 1,lb = None,ub = None,conditional= False,** kwds) | 函数(单参数)相对于分布的期望值。 |
median(df,loc = 0,scale = 1) | 分布的中位数。 |
mean(df,loc = 0,scale = 1) | 分布的平均值。 |
var(df,loc = 0,scale = 1) | 分布的方差。 |
std(df,loc = 0,scale = 1) | 分布的标准偏差。 |
interval(alpha,df,loc = 0,scale = 1) | 包含分布的Alpha百分比的范围的端点 |