Relational inductive biases, deep learning, and graph networks阅读笔记

论文标题: Relational inductive biases, deep learning, and graph networks

在这里插入图片描述论文地址: https://arxiv.org/pdf/1806.01261.pdf
项目地址:https://github.com/deepmind/graph_nets

文章导读

  这篇文章联合了DeepMind、谷歌大脑、MIT和爱丁堡大学的27名作者(其中22人来自DeepMind),用37页的篇幅,对关系归纳偏置和图网络(Graph network)进行了全面阐述。
那么,这篇论文是关于什么的呢?DeepMind的观点和要点在这一段话里说得非常清楚:
  这既是一篇意见书,也是一篇综述,还是一种统一。我们认为,如果AI要实现人类一样的能力,必须将组合泛化(combinatorial generalization)作为重中之重,而结构化的表示和计算是实现这一目标的关键。
正如生物学里先天因素和后天因素是共同发挥作用的,我们认为“人工构造”(hand-engineering)和“端到端”学习也不是只能从中选择其一,我们主张结合两者的优点,从它们的互补优势中受益。

  在论文里,作者探讨了如何在深度学习结构(比如全连接层、卷积层和递归层)中,使用关系归纳偏置(relational inductive biases),促进对实体、对关系,以及对组成它们的规则进行学习。
  他们提出了一个新的AI模块——图网络(graph network),是对以前各种对图进行操作的神经网络方法的推广和扩展。图网络具有强大的关系归纳偏置,为操纵结构化知识和生成结构化行为提供了一个直接的界面。
作者还讨论了图网络如何支持关系推理和组合泛化,为更复杂、可解释和灵活的推理模式打下基础。

论文简介

Abstract

  人工智能最近经历了一场复兴,在视觉、语言、控制和决策等关键领域取得了重大进展。取得这些进展的部分原因是由于廉价的数据和计算资源,它们符合深度学习的天然优势。然而,在不同压力下发展起来的人类智力,其许多决定性特征对于目前的方法而言仍是触不可及的。特别是,超越经验的泛化能力——人类智力从幼年开始发展的标志——仍然是现代人工智能面临的巨大挑战。

  本论文包含部分新研究、部分回顾和部分统一结论。我们认为组合泛化是人工智能实现与人类相似能力的首要任务,而结构化表示和结构化计算是实现这一目标的关键。正如生物学把自然与人工培育相结合,我们摒弃“人工构造”与“端到端”学习二选一的错误选择,而是倡导一种利用它们互补优势的方法。我们探索在深度学习架构中使用关系归纳偏置如何有助于学习实体、关系以及构成它们的规则。我们为具有强烈关系归纳偏置的 AI 工具包提出了一个新构造块——图网络(Graph Network),它泛化并扩展了各种对图进行操作的神经网络方法,并为操作结构化知识和产生结构化行为提供了直接的接口。我们讨论图网络如何支持关系推理和组合泛化,为更复杂的、可解释的和灵活的推理模式奠定基础。

1 Introduction(介绍)

一些定义和阐述:
  • 组合泛化(combinatorial generalization):对应的是语言的可以无限生成的能力, 从有限的词汇和规则中,通过组合可以生成无限的序列和意义。论文中的定义为:constructing new inferences, predictions, and behaviors from known building blocks。

  • 认知机制(cognitive mechanism):对关系的复杂心理结构表征, 以及基于关系的推理, 构成了人的认知系统, 而认知系统衍生了人类强大的组合泛化能力。

  • 接着,介绍了解释的本质(The Nature of Explanation),是学术界对人去理解解释世界的模型。
    指出我们在学习的时候(接受一个正确实例的时候), 可以做两个事情:

  • 将新的知识放入已有的结构化知识框架

  • 调整框架去适应新的知识.

  • 现在的实现组合泛化的系统

   逻辑、语法、经典规划、图形模型、因果推理、贝叶斯非参数化和概率规划(logic, grammars, classic planning, graphical models, causal reasoning, Bayesian nonparametrics, and probabilistic programming);
其下面的子领域都明确的以实体和关系为中心进行学习。
人工智能的核心问题是如何构建表现出组合泛化的人工系统,也是许多结构化方法的核心。

  • 结构化方法如此重要的原因
    部分是因为数据和计算资源非常昂贵,而结构化方法的强归纳偏置对改进的样本复杂性非常有价值。
  • 目前深度学习方法状况
    现代深度学习方法经常遵循“端到端”设计理念,强调最小的先验表征和计算假设,并试图避免显式结构和“人工构造”。并且在很多领域取得了显著成果,比如,图像分类,自然语言处理等等。但是这样就需要大量的数据和大量的计算时间. 并且其无法解决一下几种问题:
    (1)复杂的语言以及场景的理解
    (2)结构化数据的推理
    (3)不同训练条件下的迁移学习
    (4)小数据量的任务
    需要解决这些问题,就需要添加组合泛化( combinatorial generalization)
  • 早期的结构化方法(有着强归纳偏置) 来解决上述无法解决的问题
    在模拟制造、语言分析、符号操作和其他形式的关系推理等领域中,研究人员开发了各种创新的表示和推理结构化对象的子符号方法( sub-symbolic approaches)以及关于大脑如何工作的更加综合的理论(more integrative theories for how the mind works)
  • 结构的方法和深度学习方法结合
    文章认为现代人工智能的一个核心是将组合泛化作为首要任务,提倡采用综合方法来实现这一目标,将基于结构的方法和深度学习方法结合起来。最近,在深度学习和结构化方法的交集中出现了一类模型,这些模型关注于对显式结构化数据,特别是对图进行推理的方法。这些方法的共同之处在于,它们都具有在离散实体,以及实体之间的关系上执行计算的能力(have in common is a capacity for performing computation over discrete entities and the relations between them) 最重要的是,这些方法带有强烈的关系归纳偏置(relational inductive biases),以特定的架构假设的形式,引导这些方法学习实体和关系。
  • 文章接下来章节的介绍
    (1)通过关系归纳偏见的视角来研究各种深度学习方法,表明
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值