生成式AI赋能制造业研发设计:加速创新,智造未来

        生成式AI能够加速概念生成和设计迭代,大幅缩短设计周期;拓展设计师的思维,激发创新灵感,创造出更具创意和竞争力的产品;还可辅助处理重复性工作(如文档生成、数据分析等),使设计师能够专注于更具创造性和战略性的任务。本文将探讨生成式AI在制造业研发设计各阶段的应用,强调人机协同,以最大化AI的潜力,推动制造业创新发展。


2. 生成式AI技术在研发设计中的应用基础

生成式AI是一类能够学习训练数据中的模式并生成新的、类似数据的模型。在制造业研发设计中,主要应用以下几种技术:

  • 图像生成: 基于生成对抗网络(GANs)和扩散模型(Diffusion Models)等技术,通过文本描述、草图或图像等输入,生成高质量的概念草图、渲染图和设计变体,为设计师提供丰富的视觉灵感。

  • 3D模型生成: 利用点云、体素、神经辐射场(NeRF)等技术,快速创建初步的3D模型,加速概念验证和设计迭代。这些技术可以从2D图像或文本描述中重建3D形状,为设计师提供高效的建模工具。

  • 自然语言处理(NLP)/大型语言模型(LLMs): 用于需求分析、文档生成、人机交互等方面。例如,基于产品描述自动生成技术规格书初稿,或通过自然语言对话与设计师互动,理解设计意图。

生成式AI与其他AI技术(如机器学习、优化算法、规则引擎等)常结合使用。例如,结合仿真软件优化设计参数,再用生成式AI生成优化的设计变体,或用机器学习模型预测产品性能,再通过生成式AI根据预测结果生成不同设计方案。


3. 生成式AI在制造业研发设计各阶段的应用

在研发设计流程中,设计师始终处于核心地位,负责创造性思考、评估、决策和沟通。生成式AI作为辅助工具,增强设计师的能力,提高效率和准确性,并减轻重复性工作负担。

图片

3.1 概念生成阶段

概念设计阶段是最具创造性和探索性的阶段,也是生成式AI大有可为的领域。

  • 设计师角色: 提出初步设计理念和方向,进行概念草图绘制和方案评估。

  • 生成式AI辅助应用:

    • 生成多种概念方案: 生成式AI能够根据用户输入的设计目标、功能需求或初步草图,自动生成多种具有创新性和多样性的概念设计方案。这些方案可以包含产品外观、结构、材料等多维度的设计可能性,帮助设计师快速探索不同方向。

      • 示例场景: 在汽车制造中,设计团队为新款电动车设计外观。通过输入关键设计要求(如空气动力学参数、品牌风格要求等),生成式AI可以生成多种车身造型供设计师选择和调整。

    • 设计变体生成: 生成式AI可基于一个初始设计生成多种变体,通过自动调整参数(如尺寸、形状、结构)来创建具有不同属性的设计选项,满足不同市场或用户群体的需求。

      • 示例场景: 在消费电子领域,设计师为新款耳机设计多个版本,AI根据基准设计生成不同颜色搭配、形状细节和材质组合的变体,快速覆盖不同消费群体偏好。

    • 风格迁移: AI可通过学习已有设计风格,将特定风格迁移到新设计上,使产品设计更符合品牌定位或市场趋势。

      • 示例场景: 在家具制造中,生成式AI通过学习北欧风格的设计语言,将其应用于新款桌椅的外观开发中,实现既具创新又符合风格统一的设计。

    • 快速评估和筛选方案: 生成式AI能够结合预定义的工程约束(如强度、重量、材料可用性)和市场需求,对生成的设计方案进行快速评估并排序,筛选出最优方案供设计师进一步优化。

      • 示例场景: 在航空航天行业,AI生成的零部件设计会自动评估是否满足强度要求和生产成本限制,筛选出符合要求的轻量化设计方案供工程师选择。

    • 自动生成初步草图: AI可以根据文字描述自动生成概念草图,为设计师提供初始的可视化灵感,节省从零开始的时间。

      • 示例场景: 在工业设备研发中,工程师输入“紧凑型模块化泵站”关键词,AI生成多个泵站外观和布局的初步草图,为后续详细设计奠定基础。

  • 核心价值: 加速概念迭代,帮助设计师探索更多设计可能性,提升设计效率。

3.2 详细设计阶段

详细设计阶段需要高度的精确性和工程约束。

  • 设计师角色: 基于概念设计方案,进行详细的结构设计、零部件设计、材料选择和技术参数确定。

  • 生成式AI辅助应用:

    • 非规则几何形状的设计: 当设计任务超出传统规则和几何形状的范畴,尤其当设计需要考虑多种复杂约束时,设计师需要反复试验和修改来优化设计方案。生成式AI能同时考虑多个设计约束,发现优解,探索更多设计空间。

    • 辅助生成技术文档: 基于3D模型和设计参数,自动生成技术文档和装配说明等,提高文档编写效率。

  • 核心价值: 减轻设计师的重复性工作负担,提高文档编制效率,为设计师提供初步的设计起点,但不能替代设计师的专业知识和经验。

3.3 仿真与验证阶段

预测、评估和优化产品在实际环境中的性能和行为,以确保设计方案的可行性、可靠性和安全性。

  • 工程师角色: 对设计方案进行性能验证和优化。

  • 生成式AI的应用:

    • 辅助仿真参数设置和结果分析: 仿真过程中的参数设置(如边界条件、物理模型和网格划分等)是仿真结果精度的关键。生成式AI能够通过学习历史仿真数据和专家经验,帮助设计师优化参数选择,并减少手动设置的时间和复杂度。通过AI辅助分析仿真结果(如识别关键性能指标和潜在缺陷),可以帮助工程师更快地理解设计性能,发现潜在问题。

    • 基于仿真结果的设计优化探索: 生成式AI可以基于仿真结果,探索设计改进的方向,例如通过生成新的设计变体或调整设计参数,以提高产品性能。然而,目前基于AI的自动设计优化仍然面临诸多挑战,例如优化目标的定义、约束条件的设置以及优化算法的效率和鲁棒性等。因此,AI在此阶段主要提供设计优化的可能性探索,最终的设计方案仍然需要设计师进行评估和决策。

    • 加速仿真迭代(应用有限): 在一些特定的仿真场景中,例如参数化模型的优化或代理模型的构建,生成式AI可以辅助进行多轮仿真迭代,加速仿真过程。但在高精度仿真和复杂物理问题的情况下,AI的应用价值相对较小。当前工程中,传统的优化和加速方法仍然占主导地位。

  • 核心价值: 辅助设计师提高仿真效率、更好地理解仿真结果,并探索设计优化的可能性。目前,完全依赖AI进行仿真和验证仍然是不现实的。

3.4 工艺规划阶段

确保设计方案具备可制造性,并制定详细的生产流程。

  • 工艺工程师角色: 分析设计方案,进行制造可行性分析,确定工艺流程、参数、标准、设备和夹具,以及初步质量控制等。

  • 生成式AI的辅助应用:

    • 基于产品模型的工艺流程优化: 规则性较强的产品和工艺流程基于成熟的专家规则系统、图论和优化算法已在一定程度上实现了工艺流程的自动生成;但在新产品或新工艺的快速开发、多变体产品的工艺开发以及复杂装配流程的规划等场景下,生成式AI的优势在于能够处理更复杂、非结构化的数据,例如自然语言描述的工艺知识和图像化的工艺流程图等。它可以学习大量的工艺数据和专家经验,并生成更灵活、更创新的工艺流程。

    • 复杂工艺参数的交互优化: 机器学习算法(例如回归、分类和神经网络)和优化算法(例如遗传算法和粒子群算法)已经在工艺参数优化方面得到了广泛应用。在难以进行大量实验或仿真的场景以及多目标参数探索等场景下,生成式AI处理复杂、互相依赖的参数时具有更强的灵活性。

    • 辅助工艺文档的自动生成: 生成式AI的优势在于可以生成更自然、更流畅的文本,并可以根据不同的需求生成不同风格的文件。尤其适用于生成更易于理解的作业指导书和操作手册,以及快速生成不同语言版本的工艺文件等场景。需要注意专业术语和行业规范的处理。

  • 核心价值: 帮助工艺工程师更高效地设计和优化生产工艺,提高生产效率和产品质量。

3.5 试产阶段

在小批量生产环境下对工艺规划和生产流程进行验证和优化的阶段,发现和解决潜在的问题,为大规模生产做好准备。

  • 工程师角色:试产计划、质量检验与问题排查、工艺流程/参数优化以及编写试产报告等。

  • AI的辅助应用:

    • 辅助试产报告的自动生成: 基于试产数据,生成含图表和关键指标的报告。

    • 数据分析与问题识别: 辅助分析试产数据,发现质量问题和生产瓶颈。

  • 核心价值: 帮助工程师提高报告编制效率,辅助试产数据分析与问题识别。


    4. 应用案例

以下是一些生成式AI在制造业研发设计中应用的实际案例:

  • 案例1: 通用汽车轻量化座椅支架:通用汽车使用Fusion 360的生成式设计功能,重新设计了座椅支架。通过输入载荷、约束和材料等参数,AI生成了150多个设计方案。工程师从中选择了一个最佳方案,相比传统设计减重40%,同时保持了结构强度和刚度。

  • 案例2: Robobus的内部装饰设计:PIX Moving使用Fusion 360的生成式设计功能来创建其自主驾驶车辆Robobus的内部装饰。该公司面临着在保持重量和结构强度之间找到平衡的挑战。通过生成式设计,PIX Moving能够快速生成数百种设计选项,从而在1-2个月内完成产品开发并成功推向市场。

  • 案例3: 自行车零件优化:一家自行车制造商使用Creo GDX优化了自行车车架的某个连接件。通过定义材料、制造工艺和性能目标,GDX生成了多种可制造的设计方案,最终选择的方案在减轻重量的同时提高了强度。

  • 案例4: 医疗植入物设计:Creo GDX被应用于医疗领域,帮助设计定制化的医疗植入物,根据患者的个体解剖结构生成优化的植入物形状。

  • 案例5: 汽车悬挂系统优化:西门子在NX软件中集成了生成式AI功能,用于设计工业机器人手臂,优化了手臂的结构和运动性能。

  • 案例6: 汽车车身结构设计:CATIA利用生成式AI为汽车行业提供自动化设计生成、性能优化和复杂技术挑战解决方案。例如帮助设计复杂的车身结构,通过AI优化车身的气动性能和碰撞安全性等。

  • 案例7: 汽车安全模拟:Ansys的SimAI平台结合了预测性准确性与生成式AI,加速了汽车工程师在碰撞测试中的模拟过程。通过对不同设计变化进行训练,该平台可以在几分钟内预测新的设计的3D响应。使得工程师能够以10到100倍的速度获得结果,从而更早地聚焦于有前景的设计方案。

  • 案例8: 全场景AI大模型:吉利汽车依托文心快码构建全场景AI大模型,提高开发效率。通过生成式AI技术,吉利能够更快地迭代设计方案,并在较短时间内实现产品从概念到市场的转变。

  • 案例9: 产品设计与UI设计:海尔设计引入生成式AI到其产品设计、UI设计和品牌设计等环节,通过与亚马逊云科技合作,开发出全国首个结合实际业务场景落地的AIGC工业设计企业级解决方案。这一解决方案涵盖新品设计、改款升级及渠道定制化等多个业务场景,有效提升了设计效率。

  • 案例10: ChatCAD辅助设计工具:创新奇智推出了“ChatCAD”生成式辅助工业设计工具,利用大模型技术,支持设计师通过简单的对话问答形式快速生成符合要求的工业设计图。该工具能够理解设计师的创意意图,并自动生成相应的图纸。


5. 生成式AI与CAD/CAE的常见集成方式

  • 基于插件/扩展的集成: 将AI功能以插件或扩展的形式集成到现有CAD软件中,用户可以在CAD环境中直接使用AI功能。优点是对现有工作流影响小,缺点是受限于CAD软件的API能力和插件扩展性,以及版本兼容性问题。例如Grasshopper等。

  • 基于API和云服务的集成: 通过API接口将AI系统与CAD工具集成,利用云端强大的计算资源进行复杂的计算和优化。优点是计算能力强,易于部署和按需付费,缺点是依赖网络连接,存在数据隐私和安全问题,以及需要考虑混合部署策略。例如Autodesk Fusion 360 Generative Design和Siemens NX等。

  • 专门的AI驱动设计工具: 开发集成了AI算法的专用设计工具,能够自动化地进行设计生成和优化。优点是自动化程度高,能够加速设计过程,缺点是需要一定的AI应用基础,且有效性依赖于训练数据质量。例如Genesis、nTop Platform和Altair HyperWorks等。

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值