1. 相机标定的四个坐标系以及转换关系
1.1 四个坐标系介绍
1.1.1 世界坐标系(Xw, Yw, Zw)
- 为了描述相机位置而被引入的
- 标定时确定标定物的位置
- 作为双目视觉的系统参考系,给出两个摄像机对世界坐标系的关系,从而求出相机之间的相对关系
- 作为重建得到三维坐标的容器,重放重建后的物体的三维坐标
1.1.2 摄像机坐标系(Xc, Yc, Zc)
摄像机坐标系是摄像机站在自己角度上衡量的物体的坐标系。摄像机坐标系的原点在摄像机的光心上,z轴与摄像机光轴平行。
1.1.3 图像坐标系(x,y)
主要用于表征从摄像机坐标系向图像坐标系的透视投影关系,特点为连续,原点位于摄像机光轴与成像平面的焦点上
1.1.4 像素坐标系(u,v)
我们能从摄像机得到的真实信息,特点为离散,原点位于图像的左上角,其实是存储器的首地址
1.2 简单知识介绍
上图是针孔摄像机的基本模型。平面π称为摄像机的像平面,点Oc称为摄像机中心(或光心),f成为摄像机的焦距,Oc为端点且垂直于像平面的射线成为光轴或主轴,主轴与像平面的交点p是摄像机的主点
1.3 图像坐标系与像素坐标系的关系
如上图所示,像素坐标系u-v的原点为O0,图像坐标系x-y的原点O1在像素坐标系u-v的坐标为(u0,v0),dx和dy分别表示每个像素在横轴x和纵轴y的物理尺寸则图像坐标系和像素坐标系的坐标关系如下所示:
u = x d x + u 0 u = \frac{x}{dx}+u_{0} u=dxx+u0 v = x d x + v 0 v = \frac{x}{dx}+v_{0} v=dxx+v0
写成矩阵形式:
[ u v 1 ] = [ 1 d x 0 u 0 0 1 d y v 0 0 0 1 ] [ x y 1 ] \left [ \begin{matrix} u\\ v\\ 1 \end{matrix}\right ] = \begin{bmatrix} \frac{1}{dx} & 0 & u_{0}\\ 0& \frac{1}{dy} & v_{0}\\ 0& 0 & 1 \end{bmatrix} \left [ \begin{matrix} x\\ y\\ 1 \end{matrix}\right ] ⎣⎡uv1⎦⎤=⎣⎡dx1000dy10u0v01⎦⎤⎣⎡xy1⎦⎤
1.4 世界坐标系与摄像机坐标系的关系
世界坐标系的坐标可以通过刚体变换(旋转以及平移转换)为摄像机坐标系的坐标,如下图所示
可表现为如下:
[ X c Y c Z c ] = [ r 00 r 01 r 02 r 10 r 11 r 12 r 20 r 21 r 22 ] [ X Y Z ] + [ T x T y T z ] \left [ \begin{matrix} X_c\\ Y_c\\ Z_c \end{matrix}\right ] = \begin{bmatrix} r_{00} & r_{01} & r_{02}\\ r_{10}& r_{11} & r_{12}\\ r_{20}& r_{21} & r_{22} \end{bmatrix} \left [ \begin{matrix} X\\ Y\\ Z \end{matrix}\right ] + \left [ \begin{matrix} T_x\\ T_y\\ T_z \end{matrix}\right ] ⎣⎡XcYcZc⎦⎤=⎣⎡r00r10r20r01r11r21r02r12r22⎦⎤⎣⎡XYZ⎦⎤+⎣⎡TxTyTz⎦⎤
我们将旋转矩阵R以及平移矩阵T称之为摄像机的外参数
R可以表示为分别绕X,Y,Z轴旋转的效果之和,R=r1r2r3如下图所示:
1.5 摄像机坐标系、图像坐标系和像素坐标系三者之间的关系
摄像机坐标系中的坐标通过透视投影(用中心投影法将形体投射到投影面上)变为图像坐标系中的坐标
由简单的相似三角形可以得到
x = f Z c X c x = \frac{f}{Z_c}X_{c} x=ZcfXc<