神经网络模型的过拟合和欠拟合问题

本文介绍了过拟合和欠拟合的概念及其原因,过拟合表现为训练集表现好但测试集不佳,欠拟合则是训练集和测试集表现均不理想。解决过拟合的方法包括增加数据量、使用正则化、调整参数、降低模型复杂度、应用Dropout和提前结束训练;欠拟合的对策是提升模型复杂度、增加特征数、调整参数和降低正则化。
摘要由CSDN通过智能技术生成

一、过拟合和欠拟合问题

过拟合定义:模型在训练集上表现良好,但在测试集上表现不好

过拟合原因:

1.原始特征过多,存在一些噪声特征,而模型过于复杂,学习能力过强,捕获了这些错误特征,从而影响了预设的分类规则。

2.训练样本太少,而模型很复杂

欠拟合定义:模型在训练集和测试集上表现的都不好

欠拟合原因:

1.模型复杂度过低,无法对数据进行很好的拟合

2.学习到的数据特征过少

二、如何解决过拟合和欠拟合问题

过拟合解决方法:

1.增加训练数据量或使用数据增强

这样可以减少噪声的影响,可以让模型学习到更多的数据一般特征。

2.使用正则化约束

在代价函数后面添加正则化项,可以避免训练出来的参数过大而使模型过拟合。常用的正则化有L1正则化和L2正则化,具体使用哪种视情况而定。

3.调整参数和超参数

不论什么情况调参都是必须的

4.降低模型的复杂度

5.使用Dropout

降低神经元之间的联合适应性,增强了泛化能力。一般用在全连接层,卷积层一般不用(原因是,卷积层参数较少,一般不易过拟合)

6.提前结束训练

训练时,如果随着迭代次数增加,验证误差不降低反而增加时,就可以提前结束训练了

欠拟合解决方法:

1.增加模型的复杂度

因为模型欠拟合,有可能是因为模型太简单,而学习不到足够的辨别特征

2.增加样本有效特征数,使输入数据具有更强的表达能力。

因为欠拟合是因为学习到的特征比较少,所以要增加输入的特征质量和数量

3.调整参数和超参数

神经网络中的:学习率,学习衰减率,隐藏层数,隐藏层单元数,batch_size大小,Adam优化算法中的β1和β2参数。

4.降低正则化参数,或者直接去除。

正则化是为了防止模型过拟合,现在都欠拟合了,所以可以削弱或者直接删除正则化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVplayer111

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值