变差函数

1. 变差函数定义

1.1 二阶平稳假设:

由于统计推断一般都要进行重复采样,但储层属性参数有其特殊性,每个位置不可能有多个样本,所以对随机函数Z(u)提出了本征假设,试图采用随机函数理论来接近空间插值。
二阶平稳性是指同时满足下面两个条件:
在这里插入图片描述

1.2 变差函数定义

     通常将地质变量在空间两位置处取值之差的方差之半定义为变差函数,记为:

在这里插入图片描述

从公式可以看出,变差函数揭示了距离h的空间两位置,其地质变量取值的相似度。r(u,h)越小,两位置处的属性参数取值就越接近,反之则说明差异较大。变差函数可以定量的表征变异程度。
在二阶平稳条件下,有:
在这里插入图片描述

可见,二阶平稳假设的第二个条件实质是指变差函数只依赖于滞后距h,而与绝对位置u无关。在些基础上,就可用距离为h的点对,观测值增量平方的算术平均值来计算实验变差函数。

2. 变差函数参数及类型

在这里插入图片描述

在这里插入图片描述

变差图中有3个主要特征值是 a , C , C 0 a,C,C_{0} a,C,C0,这3个特征值反映了储层参数的空间变化特征。

  1. 变程 a a a是指当距离超过某一范围之后,变差函数值不再增大而稳定在一个极限值附近,这个范围称为变程,变程内变量具有相关性,变程之外变量不再具有空间相关性。
  2. C 0 C_{0} C0,块金常数,原点处的变差函数值
  3. 对于纵坐标的极限值( C+C0) 和块金常数 C0( 指原点处的变差函数值) 是测量误差和微矿化结构所致。

变差函数类型有球型、指数型、高斯型3种类型,应用各种类型时,储层参数沿某个方向的变化速度不同。

3 数据分析

       在Petrel中进行属性建模时先要进行数据分析,数据分析包括数据变换和变差函数分析。变差函数反映储层参数的空间相关性,能否求得理想的变差函数,并将成果应用于属性模型中,是随机建模的关键。

        Petrel 将数据变换作为所有变差函数求取的开始是随机建模思想在 Petrel 中的具体体现, 因为高斯模拟算法的第一步便是将所有条件数据 (硬数据和已模拟实现的数据)进行正态变换, 从非正态分布变换为正态分布, 作为先验条件概率分布数据变换中的各种变换常用的是Input Truncation、 Shift Scale、Logarithmic和Normal Score

        Normal Score变换是任何一个变换组合中必不可少的, 因为该变换是变差函数分析的前提条件, 它一般放在变换组合的最后面。 当样品数足够多及样品的自然分布接近正态分布时, Normal Score 的设置可采用其默认设置, 即 Use values。 当没有足够的样品时, 可根据变量的区域性统计分布规律, 应用“Define curve” 交互式的定义样本的概率分布。

3.1 变差函数分析中主方向的选择

        理论上讲, 主方向是指样点间相关性最好的方向。 变差函数对不同方位角很敏感, 显然, 主方向上具有最大的变程。 变差函数的变程大小不仅能反映某区域变量在某一方向上变化的大小, 同时还能体现出区域变量的载体(如砂体)在某个方向上的平均尺度, 从而可利用变程来预测砂体在某个方向上的延伸尺寸, 以实现预测砂体的规模。
        变差函数拟合的变程, 选取变程最大的作为主方向,但在实际建模过程中, 还需参考地质原型模式来估计变差函数的各项参数, 即根据河道发育的方位、 延伸长度、 河道宽度、 纵向沉积单元厚度来确定主方向和主次变程。
        实际操作中可通过 2 种方法相互映证来确定主方向:一种是参考沉积相图;另一种是参考某种属性的等值线或者趋势面图。 注意这种等值线要使用非克里金算法作出, 因为克里金算法已经用到变差函数了。

3.2 变差函数模型的选择

        常规的变差函数模型有指数模型、 球状模型和高斯模型。 这 3 种模型定义的某样点影响其周围的点。 当变程和块金常数确定时, 已知样点对周围未知点的影响依次增加。 实际工作中所用到的区域变量从以上 3 种模型中进行选择及组合, 其中应用较多的是球状模型。

1. 指数模型适用于河道型地质条件,产生的结果相对随机性大。
2. 球状模型适用于大型河道和相对稳定的三角洲沉积环境,相对随机性适中。
3. 高斯模型适用于海湖等稳定沉积环境,连续性最好。

3.3 关于变程的拟合

        变程的求取在变差函数分析中至关重要, 特别是在相建模中, 它表征了砂体在某个方向的延伸尺度, 从而实现了预测砂体的规模。 Petrel 中的很多默认选项都不是最佳的, 比如数据分析中的主方向和次方向变程的默认值都被设为2000m, 而在属性建模自带的数据分析界面中主方向和次方向变程的默认值都分别是 1000m 和 500m, 显然不能使用这些默认值作为变程。 对于不同的参数和不同的沉积相, 这 2 个值会有所不同。 比如渗透率的影响因素较孔隙度多, 其变化剧烈程度比孔隙度大。 因此相同微相、 相同层位的孔隙度变程要略大于渗透率的变程,即孔隙度的空间连续性较好, 它在 3 个方向的变程都将比孔隙度小。

        确定主方向之后, 即可利用以上谈到的 3 种变差函数模型进行组合, 以求取变程。 但实际应用中,并不是所有的变差函数组合都像图 4 示意的那么典型, 变程往往是知道取值范围而难以准确确定。 此时, 可以在趋势面约束下进行相建模, 并分别试用不同大小的变程, 直到所得到的相模型平面分布与沉积相图基本吻合为止。 如图 6 所示, 在此例中仍然采用图 3a 所示的趋势面。 当变程偏小时, 相模型内部储层骨架连续性差; 当变程偏大时, 储层骨架会超出趋势面勾勒的范围, 与沉积相图符合率降低。
在这里插入图片描述        如果在进行变差函数分析之前没有进行正态变换, 块金常数将会出现大于 1 的值, 基台值也不为1, 这当然是不允许的; 进行正态变换,基台值将归一化到 1, 块金常数相应的处于 0 和 1 之间。

        由于块金常数的引入, 使得孔、 渗、 饱的模拟值存在突变, 虽然符合实际的地质情况, 但会给之后的数值模拟造成一定的困难。

        实际计算中,假设 N ( h ) N(h) N(h)是间距为 h h h的所有点对的总数,则变差函数可以通过下式计算:
y ( h ) = 1 2 N ( h ) ∑ i = 1 N ( h ) [ ( Z ( x + h ) − Z ( x ) ) 2 ] y(h)=\frac{1}{2N(h)}\sum_{i=1}^{N(h)}[(Z(x+h)-Z(x))^2] y(h)=2N(h)1i=1N(h)[(Z(x+h)Z(x))2]
        为了获得一个可靠的变差函数,取样点不能太少,由于取样点多为不规则分布,所以取样点之间距离刚好为 h h h的点相对较少,为了增加点对,引入了邻域的概念,则上式变差函数变为:
y ( h ) = 1 2 N ( h ) ∑ ∣ h ( i , j ) − h ∣ ⩽ Δ h N ( h ) [ ( Z ( i ) − Z ( j ) ) 2 ] y(h)=\frac{1}{2N(h)}\sum_{|h(i,j)-h|\leqslant\Delta{h} }^{N(h)}[(Z(i)-Z(j))^2] y(h)=2N(h)1h(i,j)hΔhN(h)[(Z(i)Z(j))2]
由于邻域概念的使用,使得只要求2个样品的距离近似等于原来所定的空间步长,这种改进的意义在于更有效地利用所有有效距离。主流建模软件在做数据分析时,用一种经典方法即截断的楔形来定义样品的邻域,如下图。
在这里插入图片描述
        变差函数在求取过程中往往要借助方位角、搜索半径、容差角、带宽、滞后距、滞后距容差、厚度以及滞后距个数等参数,变差函数的计算由以上几个参数限制。整个2D变差函数的计算过程如下图所示,当滞后距为 h h h时,以任意采样点为原点,1区域内采样点参加变差函数的计算,然后以此类推将原点移动到下一点直到计算出 y ( h ) y(h) y(h),分别求出滞后距为 2 h , 3 h , 4 h , . . . , n h 2h, 3h, 4h, ..., nh 2h,3h,4h,...,nh时的变差函数值。
在这里插入图片描述

参数求取的原则:

        应用于任何变差函数估计的操作规则是: 点对的个数随着滞后距的增加而减少。 滞后距达到某一极限后不再有更多的数据, 由于估计的精度正比于数据对的个数, 所以滞后距越大, 估计的可靠性越差。 点对数太小的变异函数值不可采用. 因此, 虽然适当减小步长值一般能提高模型拟合精度, 但如果参与计算的数据点对太少, 则只能增加最小滞后距值。当变差函数应用于克里金模拟时, 越靠近原点的部分对计算结果的影响越大, 所以, 要得到一个合理变差函数值就需要从一个较小且合理的滞后距开始。

        每一个滞后距用于计算变差函数的数值一般应大于30个点对。为了精确地估计变差函数,有的学者甚至建议至少应有100到200个样本数据。为了将滞后距控制在有意义的研究范围内,通常将搜索半径限定为 ∣ h ∣ ⩽ L 2 |h|\leqslant\frac{L}{2} h2L(L为工区内相距最远的2个数据点)。最小滞后距可选为指定方向的平均井距,因为当小于平均井距时得不到足够的点对。滞后距个数与搜索半径及最小滞后距关系为:滞后距个数=搜索半径/基本滞后距,确定其中2个参数,另一个也就得到了。带宽可选为2倍井距,滞后距容差可选为1/2该方向的平均井距。容差角与井网的类型密切相关,一般可选为 π 8 \frac{\pi}{8} 8π,可根据拟合效果作出变化,比如容差角和滞后距可以在上述原则上适当地增减,直到求出具有较小块金值和主次方向变程为止。

        块金值表现为在很短的距离内有较大的空间变异性, 可以由测量误差引起, 或是观测点的距离大于实际变程, 也可以来自矿化现象的微观变异性. 如研究目标为区域上的物性参数变化情况, 那么小的块金常数不能提供精确的信息; 若研究目标为区域上的物性参数变化情况, 那么小的块金效应常数会告诉我们该物性参数具有很好的连续性. 因此在实际建模变差函数取值时, 可置块金常数为零, 但在变差函数的拟合过程中对块金值求取有助于理解地层砂体的展布特征与非均质性. 块金是在距离为零时的模型值, 是测量不确定性的标准, 若为零值, 则数据可以得到很好地忠实, 否则网格值将不忠实于井数据。

计算实验变差函数的流程设计:

        为了求取稳健的变差函数, 需要消除可能存在的奇异值、混合分布和漂移带来的影响, 通过正态变换等方法剔除奇异值、 限制特高邻差值消除奇异值影响, 利用细分相或截尾处理降低混合分布的影响,通过计算去除趋势后剩余值变差函数的方法处理漂移作用 , 这些操作在数据预处理中完成。
在这里插入图片描述

  • 17
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值