半导体制冷片参数
1. 引言
半导体制冷片(Thermoelectric Cooler, TEC)的性能评估和选型依赖于其性能曲线。本文通过具体案例,详细说明如何利用制冷量(Qc)、输入电压(Vin)、制冷效率(COP)等参数的函数关系图,设计满足特定需求的制冷系统。
- Qc vs I曲线:用于确定工作电流和制冷能力。
- Vin vs I曲线:用于计算输入功率和电源需求。
- COP vs I曲线:用于优化能效,降低能耗。
2. 性能曲线的使用方法示例
2.1 制冷量Qc与输入电流I的关系
例如我们有一个小型电子“黑匣子”正在释放25W的热量。为了保证电子元件正常工作,其温度不应该超过20 ℃。室温一般是20 ℃左右,因此需要使用热电制冷器来降低元件的温度。
- 图.1:127对TEC的Qc vs I曲线(DT=30℃)。
上图所示,这幅图描述了制冷器的制冷量Qc、温差ΔT与输入电流I的函数关系。在这个例子中,建立起热电制冷器的工作参数Th=50 ℃, Tc=20 ℃, Qc=25 w。所需的温差是ΔT=30 ℃。
案例背景:
- 需要冷却的电子“黑匣子”发热量:25 W
- 允许的元件最高温度:20℃
- 环境温度:20℃
- 假设散热器温度(Th)为50℃(最坏情况)
- 选择制冷器型号:127对温差电偶,最大额定电流6 A
步骤解析:
-
确定温差DT:
- 温差DT = Th - Tc = 50℃ - 20℃ = 30℃。
-
查找Qc最大值点(A点):
- 在图9.1(Qc vs I曲线)中,找到DT=30℃的曲线。
- 当输入电流I=6 A时,该曲线的Qc最大值为36 W(略高于需求的25 W)。
-
调整至目标制冷量(B点):
- 沿DT=30℃曲线向下移动,找到Qc=25 W对应的点B。
- 从B点向x轴投影,得到此时的输入电流为3.0 A。
关键点说明:
- A点(6 A, 36 W)表示制冷器在最大电流下的制冷能力。
- B点(3.0 A, 25 W)是满足需求的最优工作点,此时输入电流较低,能效更高。
2.2 输入电压Vin与输入电流I的关系
下图所示描述了制冷器的输入电压Vin、温差DT与输入电流I的函数关系。在这个例子中,热电制冷器的工作参数包括Th=50 ℃, Tc=20 ℃, I=3.0 A。
案例参数:
- Th=50℃,Tc=20℃,目标电流I=3.0 A
- 图.2:127对TEC的Vin vs I曲线(DT=30℃)。
步骤解析:
-
定位DT=30℃曲线:
- 在图(Vin vs I曲线)中找到DT=30℃的线。
-
确定交点(C点):
- DT=30℃曲线与I=3.0 A的垂直线相交于点C。
-
读取Vin值:
- 从点C向y轴投影,得到输入电压Vin≈9.3 V。
关键点说明:
- 输入电压与电流呈非线性关系,温差越大,Vin越高。
- 该值用于计算制冷器的输入功率(Pin = Vin × I = 9.3 V × 3.0 A ≈ 27.9 W)。
2.3 制冷效率COP与输入电流I的关系
案例参数:
- Th=50℃,Tc=20℃,目标电流I=3.0 A
- 图3:127对TEC的COP vs I曲线(DT=30℃)。
步骤解析:
-
定位DT=30℃曲线:
- 在图(COP vs I曲线)中找到DT=30℃的线。
-
确定交点(D点):
- DT=30℃曲线与I=3.0 A的垂直线相交于点D。
-
读取COP值:
- 此时制冷效率COP≈0.85,表示制冷量是输入功率的85%。
关键公式:
- 示例计算:COP = 25 W / (9.3 V × 3.0 A) ≈ 0.89(与图表读数误差可能因曲线精度而略有差异)。
4. 设计实例:激光二极管恒温器
一个激光二极管的恒温器中使用的热电制冷器为例,说明一个典型的设计过程。二极管和相关的电子器件被安装在一个双列直插式科瓦合金外壳内,并且,必须保持在25 ℃。将外壳安装在电路板上之后,通过测试得到其热阻值为6 ℃/W。激光电路损失热量为0.5W,并且整个体系的最高环境温度为35 ℃。
首先需要选择一个热电制冷器,其不但需要具有足够的制冷量来保持适当的温度,而且,还需要满足由于外壳所引起的尺寸上的要求。首先选择了一个18对热电偶臂1.2安培的热电制冷器,因为它具有适合的尺寸和所需的热电性能。
背景参数
- 需要维持的温度:25℃
- 外壳热阻:6℃/W
- 电子器件发热量:0.5 W
- 最高环境温度:35℃
- 选择制冷器型号:18对温差电偶,最大额定电流1.2 A
- 图5:18对TEC的Vin vs I曲线。
- 图6:18对TEC的Qc vs I曲线。
设计步骤
-
初始假设:
- 假设制冷器工作在最大电流(1.2 A):
- 输入电压Vin(图5):1.2 A对应的Vin≈2.4 V(点A)。
- 输入功率Pin = 1.2 A × 2.4 V = 2.9 W。
- 外壳最大热输入:
- Pin(制冷器) + 电子器件发热量 = 2.9 W + 0.5 W = 3.4 W。
- 外壳温度升高:
- 3.4 W × 6℃/W = 20.4℃。
- 热端温度Th:
- 环境温度(35℃) + 温升(20.4℃) = 55.4℃。
- 假设制冷器工作在最大电流(1.2 A):
-
首次计算制冷量(Qc):
- 温差DT = Th - Tc = 55.4℃ - 25℃ = 30.4℃(近似30℃)。
- 在图1(Qc vs I曲线)中,DT=30℃的曲线:
- 最大Qc≈0.9 W(点B)。
- 目标Qc=0.5 W,沿DT=30℃曲线向下找到交点C,对应电流I≈0.55 A。
-
重新计算Th:
- 新输入电流I=0.55 A:
- 输入电压Vin(图5):0.55 A对应的Vin≈1.2 V(点D)。
- 输入功率Pin = 0.55 A × 1.2 V = 0.66 W。
- 外壳热输入:
- 0.66 W + 0.5 W = 1.16 W。
- 外壳温度升高:
- 1.16 W × 6℃/W = 7℃。
- 新Th:35℃(环境) + 7℃ = 42℃。
- 新DT:42℃ - 25℃ = 17℃(需重新迭代)。
- 新输入电流I=0.55 A:
-
迭代计算:
-
第二次迭代:
- DT=17℃,在图6中,DT=17℃的Qc曲线:
- 目标Qc=0.5 W对应电流I≈0.45 A。
- 计算Vin(图5):0.45 A对应的Vin≈1.0 V。
- Pin=0.45 A × 1.0 V = 0.45 W。
- 外壳热输入:0.45 W + 0.5 W = 0.95 W。
- Th=35℃ + (0.95 W × 6℃/W) = 35℃ + 5.7℃ = 40.7℃。
- DT=40.7℃ - 25℃ = 15.7℃。
- DT=17℃,在图6中,DT=17℃的Qc曲线:
-
第三次迭代:
- DT=15.7℃,对应Qc=0.5 W的电流I≈0.4 A。
- 最终Th收敛至约39.8℃,DT≈14.8℃,误差<0.1℃。
-
-
结论:
- 18对温差电偶制冷器在电流≈0.4 A时可稳定维持25℃,满足需求。
- 实际应用中需考虑散热器设计,以降低Th并提高能效。
5. 注意事项与总结
-
散热器的重要性:
- 示例中假设散热器不存在,实际设计需通过散热器将Th降至更低,以提高制冷效率并减少输入功率。
- 例如,若使用散热器使Th=35℃(环境温度),则DT=10℃,Qc需求可进一步降低。
-
迭代计算的必要性:
- Th的计算需反复迭代,因Th与制冷器的输入功率直接相关,形成动态平衡。
- 忽略迭代可能导致Th估算偏差,影响制冷器选型。
-
参数选择关键点:
- 制冷量Qc:需覆盖设备发热量,同时留有冗余。
- 输入电压Vin:需匹配电源设计,避免过压损坏或欠压失效。
- COP最大化:优先选择COP峰值附近的工况(如案例中I=3.0 A时的COP≈0.85)。
-
图表使用技巧:
- Qc vs I曲线:用于确定工作电流和制冷能力。
- Vin vs I曲线:用于计算输入功率和电源需求。
- COP vs I曲线:用于优化能效,降低能耗。