Python学习之-Pandas详解

前言:

Pandas 是一个开源的 Python 数据分析库,它提供了高性能、易于使用的数据结构和数据分析工具。Pandas提供 了方便的类表格和类SQL的操作,同时提供了强大的缺失值处理方法,可以方便的进行数据导入、选取、清洗、处理、合并、统计分析等操作。最核心的两个数据结构是 DataFrame 和 Series。

1 DataFrame和 Series的用法

DataFrame 是 Pandas 库中另一个基本的数据结构。DataFrame 可以看作是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame 既有行索引也有列索引,它可以被看作是由 Series 组成的字典(共用同一个索引)。
Pandas中的Series对象是一种带有标签数据的一维数组,标签在Pandas
中有对应的数据类型"Index", Series类似于一维数组与字典的结合。

1.1 创建一个 DataFrame 的示例:

#!/usr/bin/env python
# coding=utf-8
"""
# @Time    : 2024/4/14 14:14
# @Author  : Summer
# @File    : pandas_test
# @describe:
"""
import pandas as pd

# 创建一个 DataFrame 对象
data = {
   'Country': ['Belgium', 'India', 'Brazil'],
        'Capital': ['Brussels', 'New Delhi', 'Brasília'],
        'Population': [11190846, 1303171035, 207847528]}

df = pd.DataFrame(data)

# 查看 DataFrame 对象
print(df)
'''
   Country    Capital  Population
0  Belgium   Brussels    11190846
1    India  New Delhi  1303171035
2   Brazil   Brasília   207847528
'''

访问和操作 DataFrame 数据:

#!/usr/bin/env python
# coding=utf-8
"""
# @Time    : 2024/4/14 14:14
# @Author  : Summer
# @File    : pandas_test
# @describe:
"""
import pandas as pd

# 创建一个 DataFrame 对象
data = {
   'Country': ['Belgium', 'India', 'Brazil'],
        'Capital': ['Brussels', 'New Delhi', 'Brasília'],
        'Population': [11190846, 1303171035, 207847528]}

df = pd.DataFrame(data)

# 访问列数据
print(df['Capital'])  # 输出: "Capital" 列的值

# 添加新列
df['Area'] = pd.Series([30510, 3287263, 8515767], index=[0, 1, 2])
print(df)

# 访问行数据,通过行索引 (loc) 或行数 (iloc)
print
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_41238626

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值