518.零钱兑换Ⅱ
给你一个整数数组 coins
表示不同面额的硬币,另给一个整数 amount
表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0
。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入:amount = 10, coins = [10]
输出:1
提示:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins
中的所有值 互不相同0 <= amount <= 5000
题解:
本题是属于完全背包的问题,问当容量不超过amount时候的最大组合数。
dp[i][j]
表示当有i件物品且最大容量为j时的最多的组合情况。
递推表达式为,当我可以放入当下物品的时候,我存在两种选择,可以拿取任意这个零钱,也可以不拿取这个零钱。
本题求解的是组合数,当分析到这个地步的时候基本上只要写出完全背包统计组合数的模板就可以了。
我这边先写出二维dp的求解方案。
package com.offer;
/**
* @author bwzfy
* @create 2024/4/14
**/
public class _518零钱兑换Ⅱ {
public static void main(String[] args) {
System.out.println(change(5, new int[]{1, 2, 5}));
}
public static int change(int amount, int[] coins) {
int[][] dp = new int[coins.length + 1][amount + 1];
for (int i = 0; i < coins.length + 1; i++) {
dp[i][0] = 1;
}
for (int i = 1; i <= coins.length; i++) {
for (int j = 1; j <= amount; j++) {
if (coins[i - 1] <= j) {
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i - 1]];
}else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[coins.length][amount];
}
}
当上述代码能通过测试用例的时候,可以考虑改成滚动数组来降低空间复杂度了。
这里和01背包的滚动数组写法稍有区分,第二层的for循环是需要正序遍历的,虽然这滚动数组对我来说任然难以理解,但是可以从二维数组的角度来推理,01背包的递推是加上dp[i - 1][j - num[i - 1]]
,而完全背包的递推是加上dp[i][j - num[i - 1]]
,从这里可以看出,完全背包它本身就是要加上已经修改过的值,因此从前往后覆盖是正确的。
代码如下:
public static int change(int amount, int[] coins) {
int[] dp = new int[amount + 1];
dp[0] = 1;
for (int i = 1; i <= coins.length; i++) {
for (int j = 1; j <= amount; j++) {
if (coins[i - 1] <= j) {
dp[j] = dp[j] + dp[j - coins[i - 1]];
}
}
}
DPUtils.printDP(dp);
return dp[amount];
}