(机器学习论文笔记二)Practical Block-wise Neural Network Architecture Generation
实用的基于块的神经网络体系结构生成
论文地址:https://arxiv.org/pdf/1708.05552
简介:这篇文章介绍了一种通过强化学习的方法自动的生成神经网络,来到的一直在向强人工智能向迈进的过程。笔者认为这篇文章最大的意义在于它完善了我们“造轮子的过程”,在本文中,我们提供了一 个基于块的网络生成管道,称为BlockQNN,它使用具 有epsilon-greedy探索策略的Q-Learning范式自动构 建高性能网络。
主要的优点有:
1)与手工制作的最先进的图像分类网络 相比,它具有竞争性的结果,另外,BlockQNN生成的 最佳网络实现了3.54%的top-1错误在CIFAR-10上打败 了所有现有的自动生成网络。
(2)同时,它在设计 网络中的搜索空间大大减少,仅花费3天32 GPUs;
(3) 此外,它具有很强的普遍性,即建立在CIFAR上的网络 在较大规模的网络上也表现良好,规模较大的 ImageNet数据集。
介绍产生背景
为了适应CNN在CV中飞速的发展,传统的人工搭建网路的方法已经有些力不从心,我们提出来一种可以吧网路的各个组件模块化的方法来实现网络的自动生成</