机器学习论文笔记(二):Practical Block-wise Neural Network Architecture Generation

本文提出BlockQNN,一种基于强化学习的神经网络自动生成方法,能在减少搜索空间的情况下,3天内用32个GPU生成高性能网络。BlockQNN在CIFAR-10上取得3.54%的top-1错误,优于现有自动生成网络,并具有较好的泛化能力,可应用于ImageNet。此外,通过早期停止策略和分布式异步框架加速训练过程。
摘要由CSDN通过智能技术生成

(机器学习论文笔记二)Practical Block-wise Neural Network Architecture Generation

实用的基于块的神经网络体系结构生成
论文地址:https://arxiv.org/pdf/1708.05552

简介:这篇文章介绍了一种通过强化学习的方法自动的生成神经网络,来到的一直在向强人工智能向迈进的过程。笔者认为这篇文章最大的意义在于它完善了我们“造轮子的过程”,在本文中,我们提供了一 个基于块的网络生成管道,称为BlockQNN,它使用具 有epsilon-greedy探索策略的Q-Learning范式自动构 建高性能网络。

主要的优点有:

1)与手工制作的最先进的图像分类网络 相比,它具有竞争性的结果,另外,BlockQNN生成的 最佳网络实现了3.54%的top-1错误在CIFAR-10上打败 了所有现有的自动生成网络。

(2)同时,它在设计 网络中的搜索空间大大减少,仅花费3天32 GPUs;

(3) 此外,它具有很强的普遍性,即建立在CIFAR上的网络 在较大规模的网络上也表现良好,规模较大的 ImageNet数据集。

介绍产生背景

为了适应CNN在CV中飞速的发展,传统的人工搭建网路的方法已经有些力不从心,我们提出来一种可以吧网路的各个组件模块化的方法来实现网络的自动生成</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值