行列式

行列式是方阵的属性
类比:数的大小,符号,约束,是否为素数。
行列式 表示空间一组基的 面积,体积或者更高纬度的体积。
在这里插入图片描述
计算行列式的值:
d e t [ a b c d ] det\left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] det[acbd] = ∣ a b c d ∣ \begin{vmatrix}a &b\\c & d \end{vmatrix} acbd
图中大正方形面积为:(a+c)(b+d)
2个小正方形面积:2bc
2个大三角形:21/2a*b=ab
2个小三角形:2 * 1/2 cd =cd
大 正 方 形 − 2 个 小 正 方 形 面 积 − 2 个 大 三 角 形 − 2 个 小 三 角 形 = ( a + c ) ( b + d ) − 2 b c − a b − c d = a b + c b + a d + c d − a b = b c + a d − 2 b c = a d − b c 大正方形 - 2个小正方形面积 - 2个大三角形 - 2个小三角形=(a + c)(b + d) - 2bc - ab -cd =ab+cb + ad + cd -ab =bc +ad - 2bc =ad -bc 222=(a+c)(b+d)2bcabcd=ab+cb+ad+cdab=bc+ad2bc=adbc
二阶行列式 :
∣ a b c d ∣ \begin{vmatrix}a &b\\c & d \end{vmatrix} acbd=ad-bc

∣ a b c d ∣ \begin{vmatrix}a &b\\c & d \end{vmatrix} acbd=- ∣ c d a b ∣ \begin{vmatrix}c &d\\a & b \end{vmatrix} cadb在这里插入图片描述
有向面积:
如果上图的平行四边形是个纸片 交换行列式 相当于把直面翻过来了。
在三维即以上的空间,体积的方向将变得极为复杂。

行列式的基本性质

  1. d e t I = 1 detI=1 detI=1
  2. 交换行列式2行,则行列式的值取反。
  3. 方阵的某一行乘以一个数k,则其对应的行列式也缩放了K倍。

∣ a b c d ∣ \begin{vmatrix}a &b\\c & d \end{vmatrix} acbd = k ∣ a b c d ∣ \begin{vmatrix}a &b\\c & d \end{vmatrix} acbd在这里插入图片描述

  • d e t ( k A ) = k n d e t ( A ) det(kA) =k^ndet(A) det(kA)=kndet(A)

对一个向量某一行 扩大k倍 行列式的 值扩大k倍 对n行向量 扩大k倍则行列式扩大k的n倍。

  1. 方正的某一行加上一行数,则有:
    ∣ a + a ′ b + b ′ c d ∣ \begin{vmatrix}a+a' &b+b'\\c & d \end{vmatrix} a+acb+bd = ∣ a b c d ∣ \begin{vmatrix}a &b\\c & d \end{vmatrix} acbd+ ∣ a ′ b ′ c d ∣ \begin{vmatrix}a' &b'\\c & d \end{vmatrix} acbd
    将上面是性质拆分 得到左边和右边相等 证明等式成立。
    l e f t = ( a + a ′ ) d − ( b + b ′ ) c = a d + a d ′ − b c − b ′ c left = (a + a')d -(b +b')c=ad+ad'-bc-b'c left=(a+a)d(b+b)c=ad+adbcbc
    r i g h t = a d − b c + a d ′ − b ′ c right =ad - bc +ad' - b'c right=adbc+adbc在这里插入图片描述
    绿色部分的面积 是 蓝色部分的 和 黄色部分的面积相加。

在这里插入图片描述
二维空间:两行向量 共线 ,面积为0。
三维空间:两个向量共线,形成一个面,体积为0。
n维空间 :n维向量形成的n-m维n-m体积,他的n维体积为0.在这里插入图片描述

在这里插入图片描述
如果行列式的一行是其他行的线性组合,则行列式的值为0。

d e t ( A ) = 0 A 不 可 逆 det(A) = 0 A不可逆 det(A)=0A
d e t ( A ) ≠ 0 A 可 逆 det(A) \not= 0 A可逆 det(A)=0A
行列式的值为0 矩阵的可逆
在这里插入图片描述

在这里插入图片描述

初等矩阵与行列式

d e t ( A ⋅ B ) = d e t ( A ) ⋅ d e t ( B ) det(A\cdot B) = det(A)\cdot det(B) det(AB)=det(A)det(B)
2个体积的的乘积。

如果A活着B中的某一行 和其他线性相关?
d e t ( A ⋅ B ) = 0 det(A\cdot B) = 0 det(AB)=0
d e t ( A ) = 0 o r d e t ( B ) = 0 det(A) = 0 or det(B) = 0 det(A)=0ordet(B)=0

如果A和B中的所有行都线性无关
d e t ( A ⋅ B ) = d e t ( A ) ⋅ d e t ( B ) det(A\cdot B) = det(A) \cdot det(B) det(AB)=det(A)det(B)

线性无关矩阵可以转换成一系列初等矩阵的乘积。
d e t ( A ⋅ B ) = d e t ( E k . . . E 2 E 1 B ) det(A\cdot B) =det(E_k...E_2E_1B) det(AB)=det(Ek...E2E1B)
如果E是单位举证的某一行乘以K
d e t ( E ) = K det(E)=K det(E)=K
如果E是单位矩阵的某两行交换
d e t ( E ) = − 1 det(E)=-1 det(E)=1
如果E是单位矩阵的某行加(减)另一行的K倍
d e t ( E ) = 1 det(E)=1 det(E)=1

d e t ( E ⋅ B ) = d e t ( E ) ⋅ d e t ( B ) det(E\cdot B)=det(E) \cdot det(B) det(EB)=det(E)det(B)
如果E是某单位矩阵的某一行乘以K
d e t ( E ) = k det(E)=k det(E)=k
则 方阵EB是B中的某一行乘以k
d e t ( E ⋅ B ) = k d e t ( B ) det(E \cdot B)=kdet(B) det(EB)=kdet(B) d e t ( E ) ⋅ d e t ( B ) = k d e t ( B ) det(E )\cdot det( B)=kdet(B) det(E)det(B)=kdet(B)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

证明A的逆的行列式:

在这里插入图片描述

行式就是列式

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值