题目
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票
)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例:
输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
题解
class Solution {
public int maxProfit(int[] prices) {
if(prices == null || prices.length == 0)
return 0;
int[][] dp = new int[prices.length][3]; // dp[i][x]第i天进入x状态(0.不持股,1.持股,2.冷冻期)
dp[0][0] = 0; //不持股
dp[0][1] = -prices[0]; //持股
dp[0][2] = 0; //冷冻期
for(int i= 1; i < prices.length; i++){
//第i天不持股可以从两种状态转移而来,1.第i-1天不持股,今天仍不买股票,保持不持股状态。2.冷冻期结束了,但是今天不买股票。
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][2]);
//第i天持股可以从两种状态转移来,1.第i-1天不持股,今天买过,2.第i-1天持股,今天不卖出
dp[i][1] = Math.max(dp[i - 1][0] - prices[i], dp[i - 1][1]);
//只有第i天卖出了股票,第i天才能进入冷冻期。
dp[i][2] = dp[i - 1][1] + prices[i];
}
// 只有最后一天不持股或者前一天卖掉了这两种情况手里拿着钱,最大值在两者中产生
return Math.max(dp[prices.length - 1][0], dp[prices.length - 1][2]);
}
}