协同探索与导航文献整理



一、多无人机协同探索

1.SOAR:异构无人机协同探索实现快速自主重建

代码:代码
原文:原文
摘要:无人机(UAVs)在场景重建领域已获得显著关注。本文介绍了SOAR,一个专为复杂环境快速自主重建设计的LiDAR-视觉异构多无人机系统。我们的系统包括一个配备大视场(FoV)LiDAR的探索者以及配备相机的拍摄者。为确保快速获取场景表面几何信息,我们采用了一种基于表面前沿的探索策略。随着表面的逐步探索,我们识别未覆盖区域并逐步生成视点。这些视点通过解决一致多仓库多旅行商问题(Consistent-MDMTSP)分配给拍摄者,该问题在确保任务一致性的同时优化了扫描效率。最后,拍摄者利用分配的视点确定最佳覆盖路径以获取图像。我们在现实模拟器中进行了广泛的基准测试,验证了SOAR与经典及最新方法相比的性能。更多详情,请访问我们的项目页面sysu-star.github.io/SOAR
主要框架:在这里插入图片描述
在本文中,我们提出了SOAR,一种LiDAR-视觉异构多无人机规划器,能够同时进行探索和拍摄,以实现复杂场景的快速自主重建。我们的方法结合了基于模型和无模型方法的优势。通过利用一组协作无人机,它允许在生成粗略模型的同时并行扫描对象,从而显著提高了重建过程的效率。该系统配备了一个搭载具有大感知范围的LiDAR传感器的探索无人机,能够快速获取表面几何信息。与基于模型方法中的先前模型类似,表面为进行远程视点生成和路径规划提供了丰富的信息。同时,扫描已探索表面的任务被分配给多个配备RGB相机的拍摄者,它们协作工作以实现全面的场景覆盖。随着探索者逐步获取表面信息,我们提出了一种高效的视点生成方法,能够逐步生成覆盖表面所需的最少数量的视点。然后,通过解决一致多仓库多旅行商问题(Consistent-MDMTSP),将这些视点聚类并分配给拍摄者。这个迭代过程优化了拍摄者的扫描效率,同时确保了连续任务分配的一致性。最后,每个拍摄者根据分配的聚类规划最短路径以捕获图像,利用它们作为高效图像采集的全局指导。

主要创新点:
我们在模拟中比较了我们的方法与经典和最先进的方法。结果表明,在基准场景中,我们的方法实现了更高的效率和卓越的重建质量。总之,本文的贡献总结如下:
1.一种新颖的LiDAR-视觉异构多无人机系统,能够快速高效地完成重建任务。
2.一种增量视点生成方法,随着表面信息的逐步获取,生成最少数量的视点以确保全面覆盖。
3.一种任务分配方法,迭代优化扫描效率,同时确保连续任务分配的一致性。
4.所提出的方法已在两个现实模拟环境中得到广泛验证。我们系统的源代码将会发布。

在这里插入图片描述

2. RACER: 一种使用分散式无人机群进行快速协同探索的方法

原文:原文
代码:代码
摘要:尽管多无人机系统(UAVs)在快速自主探索方面具有巨大潜力,但仍未受到足够的关注。在本文中,我们提出了一种基于去中心化无人机队伍的快速协同探索(RACER)方法。为了有效地调度无人机,采用基于在线网格空间分解的配对交互方法,确保所有无人机同时探索不同的区域,仅使用异步和有限的通信。此外,我们优化了未知空间的覆盖路径,并通过车辆路径规划问题将工作负载均衡分配给每个无人机。在任务分配的基础上,每个无人机不断更新覆盖路径并逐步提取关键信息来支持探索规划。分层规划器寻找探索路径,细化局部视点,并生成最短时间的轨迹以顺利安全地探索已知空间。所提出的方法被广泛评估,展现了高效的探索能力、可扩展性和在有限通信下的鲁棒性。此外,首次实现了在真实世界中完全去中心化的多无人机协同探索。我们将发布我们在现实世界中的开源实现。
在这里插入图片描述

在这里插入图片描述
图. 我们的多旋翼自主探索系统概述,包括感知、协调和探索规划模块。

在本文中,我们提出了一种系统的去中心化协调和规划方法,以实现快速协同探索,该方法考虑了上述提到的困难,如图1所示。为了有效地协调四旋翼无人机,整个未知空间不断在线细分为网格,并通过配对交互将其分配给各个四旋翼。该方法仅需要异步和不可靠的通信,仅通过相邻四旋翼之间的通信即可,确保四旋翼同时探索不同的区域而不相互干扰。此外,还提出了一种容量约束的车辆路径规划(CVRP)问题公式,以实现更高效的协作。它最小化了多个全局覆盖路径(CP)的长度,并平衡了分配给每个四旋翼的工作负载,有效防止了重复探索和不公平的工作负载分配。在任务分配的基础上,每个四旋翼不断更新其CP,提供有效的全局路径来探索未知空间。在CP的指导下,分层规划器找到局部路径,细化视点,并生成最短时间轨迹,依次进行快速探索。整个系统计算开销低且具备可扩展性,能够使团队快速响应环境变化,从而持续进行快速探索。本文的贡献总结如下:

  1. 基于在线网格分解的配对交互方法,将未知空间的位置细分,确保四旋翼无人机只通过异步和有限的通信共同探索不同的区域
  2. 一种最小化全局覆盖路径(CP)长度并平衡分配给每个四旋翼的工作负载的CVRP公式。它进一步增强了四旋翼队伍之间的协作。
  3. 从[1]扩展的分层探索规划器,结合全局覆盖路径的引导,从而提高探索效率。规划器中还集成了互相避碰机制。
  4. 我们将所提出的方法与多机器人状态估计结合,实现了完全自主探索,并在具有挑战性的现实环境中进行实验。我们将发布我们的系统源代码。

3. 使用协作式纳米无人机在非结构化环境中进行最小感知探索

原文:原文
代码:代码
摘要:近年来的研究进展显著提升了在受限载荷条件下的自主导航与建图能力,但现有的多机器人检查算法并不适用于纳米无人机,原因在于其需要高性能传感器和高计算资源。为了解决这些问题,我们提出了一种名为 ExploreBug 的混合型前沿追踪算法,该算法专为处理纳米无人机群的受限感知能力而设计。该系统包括三个主要模块:建图子系统、探索子系统和导航子系统。此外,还集成了一个群体内的碰撞避免系统以防止无人机间的碰撞。我们通过广泛的模拟实验和实际环境的探索实验验证了该方法的有效性,实验中最多使用了七架无人机进行模拟,三架无人机在实际环境中进行了测试。实验涵盖了多种障碍物配置,导航速度最高达 0.75 m/s。实验结果证明,该算法能够以最少的感知信息完成探索任务,适用于不同的无人机尺寸和障碍物密度。此外,我们的前沿分配启发式方法确保了群体内探索区域和飞行路径的均匀分布。
我们公开了所提系统的源代码,以促进在基于自主纳米无人机的建图与探索领域的进一步发展。

简介:
在这项工作中,我们提出了 ExploreBug,一种专为纳米无人机设计的协调算法,旨在利用最小感知实现高效的全环境探索。与该领域的最新研究相比,这些研究优先考虑探索时间和速度,而我们的方法则采取了根本不同的方向:我们专注于“更小”,而不是“更复杂”。我们的目标是通过将现有技术改编到更小、更受资源限制的平台上,并严格评估性能与最小传感器输入之间的权衡,推动现有技术的边界。

简而言之,这项工作的主要贡献如下:

  1. 设计了一种新颖的探索算法,该算法能够有效利用最小的感知能力——仅需四个单束距离传感器——专为纳米无人机量身定制。

  2. 通过模拟和真实环境中广泛的实验评估了所提出方法的性能,尽管存在硬件限制,实验结果依然表现出良好的前景。

  3. 最后,我们将所提出系统的代码和框架开源,帮助研究人员进行评估和基于我们的框架开展进一步的研究。

在这里插入图片描述
该系统由三个主要模块组成:建图子系统、探索子系统和导航子系统,每个模块对应任务的特定阶段。如图 2 所示,展示了整个流程的概述。在建图阶段,每个无人机通过群体共享的多传感器读取数据,创建一个公共地图。由于传感器仅能收集环境的二维信息,地图以占据栅格的形式编码。探索阶段包括三个步骤:探索策略、前沿生成和前沿分配。探索策略采用了一种混合型前沿追踪算法。随后,从地图中生成了一组可用的前沿区域,并根据无人机群的状态,按需将最合适的前沿区域分配给每个无人机。最后,导航子系统向控制器发送运动参考,以到达目标点。导航系统的核心组件是一个本地路径规划器,该规划器利用 Aerostack2 [20] 框架开发,用于构建自主飞行机器人系统。Aerostack2 支持高层次机器人行为抽象,例如导航到路径点、悬停或起飞,从而简化无人机的运动控制。为了防止无人机之间的碰撞,还设计了一个群体内的碰撞避免子系统。该子系统通过跟踪每架无人机的位置提供安全保障,当检测到潜在碰撞时,相关无人机的运动会暂时停止,直到安全状态恢复为止。安全状态重新建立后,系统会恢复常规操作。

4.GVP-MREP:通过动态拓扑图上的 Voronoi 分区进行快速且通信高效的多无人机探索

代码:github
原文:原文
摘要:高效的数据传输和合理的任务分配对提高多无人机探索效率至关重要。然而,大多数通信数据类型通常包含冗余信息,这需要传输大量通信数据。此外,探索导向的任务分配并非易事,尤其是在资源受限的小型无人机(UAVs)场景中面临更大挑战。在本文中,我们提出了一种快速且通信高效的多无人机探索方法,用于大规模环境探索。我们首先设计了一个多机器人动态拓扑图(MR-DTG),由表示已探索区域和连接区域的节点与边组成。在 MR-DTG 的支持下,该方法通过仅传输探索规划所需的必要信息实现高效通信。为了进一步提高探索效率,提出了一种分层多无人机探索方法。具体来说,通过 图的 Voronoi 分割 将 MR-DTG 的节点分配给这些无人机,以考虑实际的运动成本,从而实现合理的任务分配。据我们所知,这是首次采用 图的 Voronoi 分割 处理多无人机探索任务。提出的方法在模拟中与当前最先进方法进行了对比,结果表明该方法可以将探索时间和通信量分别减少 38.3%95.5%。最后,我们在真实环境下使用 6 架无人机验证了该方法的有效性。我们将公开该方法的源代码以造福研究社区。
在这里插入图片描述
在这里插入图片描述

图 1. 所提出的多无人机探索方法的一个实例,其中 15 架无人机使用 MR-DTG 探索环境。
(a) 城市场景的模拟环境。
(b) 使用所提出方法的探索结果。
点表示历史节点,立方体表示可探索区域。历史节点的颜色对应于全局分区期间分配给它们的无人机,可探索区域的颜色对应于局部分区期间分配给它们的无人机。

在这里插入图片描述

5.森林的快速多无人机分散探索

代码:github
原文:原文
摘要:高效的探索策略在搜索救援任务和灾害调查等任务中至关重要。无人机(UAVs)在此类应用中变得尤为流行,因其能够以较高速度覆盖大面积区域。然而,随着车载无人机设备能力的不断提高,研究的重点逐渐转向多无人机任务的高级推理。尽管如此,对于以前未知的大空间区域的自主导航和探索仍然是一项开放性挑战,尤其是在环境复杂、障碍物密集且由于高障碍密度导致频繁遮挡的情况下,例如森林场景。此外,在此类场景中,无人机群的长距离无线通信问题可能成为一个限制因素,尤其是在实现无人机群导航自动化时。基于此,本研究提出了一种探索策略,该策略使多个无人机能够以分布式方式快速探索复杂场景。通过为每架无人机提供决策能力以在不同执行模式之间切换,所提出的方法在完全未知区域的谨慎探索与未知空间大规模区域的更激进探索之间实现了良好的平衡。实验结果表明,该方法在多无人机设置下对森林区域的完全覆盖速度比当前最先进方法快 30%
主要创新点:

  • 设计了一种多机器人分布式探索策略,能够在谨慎探索和已探索地图的积极开发之间实现有效平衡;
  • 在模拟中进行了广泛评估,证明了比当前最先进方法更好的性能;
  • 公开了所提出系统的源代码。

在这里插入图片描述图 2: 一个示例图,展示了基于贪婪前沿的探索方法在不同时间点的不足之处,即产生被自由区域包围的未知空间孤岛。机器人视野被表示为由黑色实线限定的浅灰色阴影区域,而障碍物和未探索区域分别用黑色和深灰色表示。机器人向最有信息量的前沿移动(b);然而,由于传感器范围有限,被障碍物遮挡的空间未被清除(c)。因此,由于探索过程倾向于更大的、更有信息量的前沿,初级规划器会忽略较小的未探索空间部分(如深灰色显示的区域 d)。

在这里插入图片描述
图 3: 管道概览,该任务旨在协调一组无人机协同构建感兴趣区域的地图。通过交换里程计和地图信息,以及当前的执行模式和目标位置,以分配感兴趣区域来实现协调。每个机器人通过深度测量和通信范围内的其他机器人传递的地图块生成环境的三维网格地图。在下一步中,前沿被提取和聚类。前沿的路径被识别,并用于为代理选择合适的探索模式。接下来选择下一个目标位置,并使用文献 [24] 生成前往目标的轨迹,同时避免与场景和其他无人机发生碰撞。

6. 在野外的微型飞行集群机器人

原文:原文
代码:代码
摘要:空中机器人被广泛部署,但无人机仍然无法进入高度杂乱的环境,例如茂密的森林,无人机群更是如此。在这些情况下,以前未知的环境和狭窄的走廊以及集群协调的要求可能会带来挑战。为了实现野外的集群导航,我们开发了微型但完全自主的无人机,这些无人机带有轨迹规划器,可以根据机载传感器的有限信息及时准确地运行。规划问题满足飞行效率、避障、机器人间碰撞避免、动力学可行性、集群协调等各种任务需求,从而实现可扩展的规划器。此外,该规划器基于时空联合优化,对轨迹形状变形并同步调整时间分配。因此,即使在最受限的环境中,也可以在几毫秒内穷尽地开发求解空间后获得高质量的轨迹。规划器最终集成到开发的手掌大小的集群平台中,具有板载感知、定位和控制功能。基准比较验证了 Planner 在轨迹质量和计算时间方面的卓越性能。各种实际现场实验证明了我们系统的可扩展性。我们的方法在三个方面发展了空中机器人技术:杂乱环境导航的能力、对不同任务要求的可扩展性以及在没有外部设施的情况下作为集群进行协调。
在这里插入图片描述

7.EGO-Swarm:在杂乱环境中的完全自主和分散的四旋翼集群系统

代码:github
在这里插入图片描述

EGO-Planner-Swarm 是由浙江大学快速自动化与控制实验室(ZJU-FAST-Lab)开发的一个开源项目,旨在为多旋翼无人机提供高效的单机或多机轨迹规划。该项目是 EGO-Planner 的扩展版本,专门针对无人机集群导航进行了优化。

核心功能

  • 完全自主和去中心化:EGO-Swarm 是一个完全自主和去中心化的系统,每架无人机都能独立决策,无需中央控制。这使得系统在复杂环境中更加灵活和鲁棒。
  • 复杂环境中的自主导航:该系统能够在未知且障碍物丰富的环境中,仅依靠机载资源进行自主导航。它通过将碰撞风险作为非线性优化问题的惩罚来实现避障。
  • 高效的轨迹规划:EGO-Swarm 提供了高效的轨迹规划能力,能够在几毫秒内生成安全、平滑且动态可行的轨迹。它还结合了一种轻巧的拓扑轨迹生成方法,以提高鲁棒性并逃脱局部最小值。
  • 支持 GPU 加速:项目中的某些模块(如 local_sensing)支持 GPU 和 CPU 两种版本,用户可以根据需要启用 GPU 加速。
  • 易于部署和使用:项目提供了详细的安装和编译指南,支持在 Ubuntu 16.04、18.04 和 20.04 上运行。用户可以快速上手,并在 ROS 环境中进行测试。

二、无人机集群协同定位

1. Omni-Swarm:用于航空集群的分布式全向视觉-惯性-UWB 状态估计系统

原文:原文
代码:代码
摘要:分散状态估计是 GPS 拒绝区域自主航空集群系统最基本的组成部分之一;然而,它仍然是一个极具挑战性的研究课题。本文提出了一种用于航空集群的分布式全向视觉-惯性-超宽带 (UWB) 状态估计系统,以解决这一研究领域。针对可观测性、初始化复杂、准确率不足、全局一致性不足等问题,我们在 Omni-swarm 中引入了全向感知前端。它由立体宽视场摄像头和 UWB 传感器、视觉惯性里程计、基于多无人机地图的定位和视觉无人机跟踪算法组成。来自前端的测量与后端基于图形的优化融合在一起。实验结果证明,所提出的方法在保证航空集群全局一致性的同时,实现了厘米级相对状态估计精度。此外,在 Omni-swarm 的支持下,无需任何外部设备即可完成无人机间防撞,展示了 Omni-swarm 作为自主空中集群基础的潜力。
在这里插入图片描述
在这里插入图片描述
本文的主要贡献如下。

(1)该文提出一种分散式全向视觉-惯性-UWB群状态估计系统Omni-swarm。进行了广泛的实验来验证 Omni-swarm,如图 1 所示。

(2)该软件和自定义数据集的开源版本已公开。

2.面向空中集群的分布式协同视觉惯性 SLAM 系统

代码:github
原文:github
摘要:协作同步定位和地图构建 (CSLAM) 对于自主空中集群至关重要,为规划和控制等下游算法奠定了基础。为了解决现有 CSLAM 系统在相对定位精度方面的局限性,这对于近距离无人机协作至关重要,本文介绍了D2SLAM——一种新颖的去中心化和分布式 CSLAM 系统。D2SLAM 创新地管理了近场估计,以实现精确的接近相对状态估计,以及用于一致全球轨迹的远场估计。其适应性强的前端支持立体和全向摄像机,可满足各种作需求并克服空中集群中的视野挑战。实验证明D2SLAM 在准确的自我运动估计、相对定位和全局一致性方面的有效性。通过分布式优化算法增强,D2SLAM 表现出卓越的可扩展性和对网络延迟的弹性,使其非常适合各种实际的空中集群应用。我们相信D2SLAM 标志着自主航空集群技术的显着进步。
在这里插入图片描述
本文的主要贡献如下。

1)简介D2SLAM,一种新型的分散式分布式 SLAM 系统,能够实现对附近无人机的高精度自我运动和相对状态估计,以及对远处或不可见的无人机进行全局一致的轨迹估计。

2)我们介绍D2VINS,一种使用 ADMM 方法的多机器人系统的分布式视觉惯性状态估计器。该系统代表了基于分布式优化的紧密耦合 VIO 估计器的第一个实例,同时提供自我运动估计和高精度的相对定位。

3)D2PGO 是一种基于 ARock 的异步分布式 PGO 算法,专为多个机器人设计。的适应性D2PGO 到通信延迟及其在管理非线性问题方面的熟练程度使其成为机器人集群的理想解决方案。这也是使用 ARock 解决姿势图问题的第一次尝试。
我们对D2SLAM,包括数据集评估和真实世界实验。此外,我们还开源了代码和自定义数据集。

3.Swarm-LIO2: 用于航空集群系统的分布式高效 LiDAR 惯性里程计

原文:原文
代码:代码
航空集群系统在合作勘探、目标跟踪和搜索救援等各个方面都具有巨大的潜力。高效、准确的自状态和互状态估计是完成这些群体任务的关键前提,这些任务仍然是具有挑战性的研究课题。本文提出了 Swarm-LIO2,这是一种用于航空集群系统的完全去中心化、即插即用、计算高效且带宽高效的光探测和测距 (LiDAR) 惯性里程计。Swarm-LIO2 使用去中心化的即插即用网络作为通信基础设施。仅交换带宽高效和低维的信息,包括身份、自我状态、相互观察测量和全局外在转换。为了支持新队友参与者的即插即用,Swarm-LIO2 检测潜在的队友自动驾驶飞行器 (AAV) 并自动初始化时间偏移和全局外在转换。为了提高初始化效率,提出了一种新的基于反射率的 AAV 检测、轨迹匹配和因子图优化方法。对于状态估计,Swarm-LIO2 在高效的误差状态迭代卡尔曼滤波 (ESIKF) 框架内融合了 LiDAR、惯性测量单元和相互观察测量,并仔细补偿时间延迟和测量建模,以提高准确性和一致性。此外,所提出的 ESIKF 框架在 LiDAR 退化的情况下利用全局外在进行自我状态估计,或者将全局外在与自我状态估计一起细化。为了增强可扩展性,Swarm-LIO2 在 ESIKF 中引入了一种新的边缘化方法,该方法可以防止计算时间随 swarm 大小而增长。广泛的模拟和真实世界实验表明,它对大规模航空集群系统和复杂场景的广泛适应性,包括无 GPS 的场景和退化的场景。
在这里插入图片描述

在这里插入图片描述

  1. 因子图优化用于高效的队友识别和全局外参校准,这大大降低了群体初始化的复杂性和能耗。具体来说,对于包含N个无人机(AAVs)的群体初始化所需的飞行次数从O(N)减少到O(1);

  2. 一种新颖的状态边缘化策略和激光雷达退化评估方法,以减轻计算负担并增强群体的可扩展性。边缘化将状态估计复杂度的增长率从三次方降低到亚线性;

  3. 详细的测量建模和精心设计的相互观测测量的时间补偿,以补偿由于不同无人机之间异步传感器测量引起的时间不匹配;

  4. 综合模拟和现实世界实验验证了Swarm-LIO2的有效性,即支持大规模群体(在现实世界中测试了五个无人机,如图1所示,在模拟中测试了40个无人机),对退化场景具有鲁棒性,并允许群体大小的动态变化,任何队友无人机都可以在线加入或退出;

  5. 提出了一种名为Swarm-LIO2的开源实现系统,包括算法和我们空中平台的硬件设计的源代码。

三、多移动机器人协同探索

1. 基于 SubMap 的多机器人勘探系统,具有多机器人多目标势场勘探方法

代码:github
原文:原文
摘要:在有限通信下,在没有外部定位的未知环境中进行协作探索是多机器人应用的一项基本任务。对于机器人间定位,各种分布式同步定位和地图构建 (DSLAM) 系统共享位置识别 (PR) 描述符和传感器数据,以估计机器人之间的相对姿态并合并机器人的地图。由于在探索过程中,机器人之间不断共享地图,我们设计了一个基于地图的 DSLAM 框架,该框架仅共享子地图,消除了 PR 描述符和传感器数据的传输。我们的框架节省了 30% 的总通信流量。为了进行探索,每个机器人都被分配以很少的差旅成本获取有关环境的许多未知信息。随着采样点数量的增加,目标会在采样边界之间来回变化,导致勘探效率下降和轨迹重叠。我们提出了一种基于多机器人多目标势场 (MMPF) 的勘探策略,可以消除目标的来回变化,将勘探效率提高 1.03 ×∼1.62 ×,节省 3 % ∼ 40 % 的差旅成本。我们基于 SubMap 的多机器人探索方法 (SMMR-Explore) 在 Gazebo 模拟器和真实机器人上进行了评估。模拟器和探索框架在 https://github.com/efc-robot/SMMR-Explore 上作为开源 ROS 项目发布。
在这里插入图片描述

在这里插入图片描述
为了满足上述要求,在这项工作中,我们建议:
(1)完全基于子映射的 DSLAM 方法。PR 和 RelPose 都基于机器人之间共享的子图,消除了 30% 的冗余数据传输。

(2)A Multi-robot Multi-target Potential Field (MMPF) 探测方法。MMPF 利用完整的前沿信息来选择最佳前沿目标,从而消除轨迹重叠,将勘探效率提高 1.03× ∼1.62×。

(3)开源的基于 SubMap 的 Multi-R obot 探索包 (SMMR-Explore) 结合了上述两个贡献。

2.MR-TopoMap:通信受限环境中基于拓扑图的多机器人探索

代码:github
原文:原文
摘要:在未知环境中进行多机器人探索是多机器人系统的一项基本任务,涉及通过机器人之间的消息进行机器人间通信。然而,在受限的通信环境中,由于占用网格图中有大量数据,有限的通信资源成为系统的瓶颈。因此,为了增强通信受限环境中的多代理探索,这封信开发了一种在机器人在环境中移动时构建拓扑图的方法,以及一种基于创建的拓扑图的探索策略。后一个映射由一组连接顶点的顶点和边组成,其中每个顶点代表一个特定区域,其中嵌入了一个描述符,该描述符是通过目视观察该区域并使用描述符识别它来提取的。每个机器人都存储了其本地网格图用于路径规划,而不是在它们之间共享。考虑到探索任务,机器人选择正确方向的能力取决于其他机器人的位置和未探索的区域。我们的探索框架在 Gazebo 模拟器和真实机器人上进行评估,将探索效率提高了 23%∼77%.与占用网格图方案相比,我们方法的数据传输减少了 84%∼90%.
在这里插入图片描述
在这里插入图片描述
我们工作的主要贡献是:
(1)基于拓扑图的多机器人探索框架,旨在将机器人间的通信流量降低 84%∼90%.
(2)基于创建的拓扑图的勘探策略,勘探效率提高 35%∼47%.
(3)在真实的机器人平台上验证我们的方法的稳健性。

3.MUI-TARE:初始位置未知的协作多智能体探索

原文:原文
代码:代码
使用未知的代理初始姿势对有界 3D 环境进行多代理探索是一个具有挑战性的问题。它既需要快速探索环境,又需要稳健地合并代理构建的子地图。现有的探索策略大多在匹配单帧观测时直接合并不同智能体构建的两个子图,由于重叠的假阳性检测,会导致错误合并,因此不鲁棒。同时,一些最近的地点识别方法使用序列匹配来实现稳健的数据关联。然而,天真地将这些序列匹配方法应用于多智能体探索可能需要一个智能体重复另一个智能体的大量历史轨迹,以便建立匹配的观察序列,这会降低整体勘探时间效率。为了智能平衡子地图合并的鲁棒性和探索效率,我们开发了一种基于激光雷达的多智能体探索新方法,该方法可以根据子地图合并过程的质量指标,指导一个智能体以自适应方式重复另一个智能体的轨迹。此外,我们的方法将最近的单代理分层探索策略扩展到多个代理,以协作的方式为子映射合并的代理,以提高探索效率。我们的实验表明,我们的方法比基线效率高 50%,同时稳健地合并子映射。
在这里插入图片描述
贡献是:

(1) MUI-TARE,一种基于多智能体子地图的规划框架,用于自主探索具有未知初始相对姿态的大规模 3D 环境。

(2) 一种自适应合并方法,包括主动合并距离估计(如 2 所示)、回退策略(如第 IV-B 节所示)和主动合并(如算法 1 所示),它允许 MUI-TARE 与 AutoMerge 智能交互,以确保勘探效率和子映射合并稳健性。

(3) 在不同环境中对方法进行了广泛的测试,其中 (i) 我们的自适应合并方法比现有的主动验证策略提高了 29% 的勘探效率,同时保持了子地图合并过程的稳健性 [9];(ii) 与在没有合作的情况下天真地将 TARE 应用于多个代理相比,我们的协作多代理规划将总体勘探时间缩短了 52%。
在这里插入图片描述

四、多移动机器人协同定位

1.DCL-SLAM:一种用于机器人集群的分布式协作 LiDAR SLAM 框架

代码:代码
原文:原文
摘要:为了在未知环境中执行协作任务,机器人集群必须建立一个全局参考框架,并将自己定位在对环境的共同理解中。但是,它在实际场景中面临许多挑战,例如缺少有关环境的先前信息以及团队成员之间的沟通不畅。这项工作提出了 DCL-SLAM,这是一个与前端无关的完全分布式协作光探测和测距 (LiDAR) SLAM 框架,用于在信息交换较少的未知环境中共定位。基于点对点通信,DCL-SLAM 采用轻量级 LiDAR-Iris 描述符进行位置识别,不需要完整的团队连接。DCL-SLAM 包括三个主要部分:可更换的单机器人前端 LiDAR 里程计、检测机器人之间重叠的分布式闭环模块,以及适应分布式姿态图优化器并结合拒绝伪回路测量的分布式后端模块。我们将所提出的框架与各种开源 LiDAR 里程计集成,以展示其多功能性。所提出的系统在各种规模和环境的基准测试数据集和现场实验中进行了广泛的评估。实验结果表明,DCL-SLAM 比其他最先进的多机器人 LiDAR SLAM 系统实现了更高的精度和更低的带宽。源代码和视频演示可在https://github.com/PengYu-Team/DCL-SLAM 上获得
在这里插入图片描述

在这里插入图片描述

综上所述,这项工作的贡献如下。

(1)提出了一种用于机器人集群的前端不可知、完全分布式协作的 LiDAR SLAM 框架,该框架支持快速迁移到不同的 LiDAR 传感器、平台和场景。

(2)提出了一种高度集成的数据高效机器人间闭环检测方法,以通过三阶段通信管道实现高精度和鲁棒性。

(3)进行了广泛的实验评估,包括性能、可扩展性和实际现场测试,以验证所提出的系统。拟议系统的自定义数据集和源代码向公众开放。

2.Swarm-SLAM:面向多机器人系统的稀疏分散式协同同步定位建图框架

原文:原文
代码:代码
摘要:协同同步定位和地图构建 (C-SLAM) 是在没有外部定位系统的环境中(如室内、地下或水下)成功进行多机器人作的重要组成部分。在本文中,我们介绍了 Swarm-SLAM,这是一个开源的 C-SLAM 系统,旨在具有可扩展性、灵活性、去中心化和稀疏性,这些都是 Swarm Robotics 的关键属性。我们的系统支持激光雷达、立体和 RGB-D 传感,它包括一种新颖的机器人间闭环优先技术,可减少通信并加速收敛。我们在五个不同的数据集上评估了我们的 ROS 2 实施,并在一个真实实验中评估了三个机器人通过自组网进行通信。

我们提供以下贡献:
(1)一种基于代数连通性最大化的通信约束下的稀疏预算机器人间闭环检测算法;
(2)一种去中心化的邻居管理和姿态图优化方法,适用于零星的机器人间通信;
(3)一个与 swarm 兼容的开源框架,支持激光雷达以及立体或 RGB-D 摄像头;
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3.CoLRIO:用于机器人群体的激光雷达测距-惯性集中状态估计

原文:原文
代码:代码

摘要——利用不同异构传感器进行协作状态估计,是机器人群体在无GPS环境中运行的基本前提,这带来了一个重大的研究挑战。在本文中,我们介绍了一个集中式系统,以促进协作激光雷达测距-惯性状态估计,使机器人群体能够在无需锚点部署的情况下运行。该系统有效地将计算密集型任务分配给中央服务器,从而减轻了单个机器人在局部里程计计算上的计算负担。服务器后端通过利用共享数据,并通过位置识别、全局优化技术以及去除异常数据来完善联合位姿图优化,从而建立全局参考,以确保精确和稳健的协作状态估计。我们系统的广泛评估,利用公开可用的数据集和我们的自定义数据集,展示了协作SLAM估计精度的显著提高。此外,我们的系统在大规模任务中表现出显著的能力,能够无缝地使十个机器人有效地协作执行SLAM任务。为了对研究社区做出贡献,我们将使我们的代码开源,并可在https://github.com/PengYu-team/Co-LRIO上访问。
在这里插入图片描述

本工作的贡献包括:(i):构建在固定滞后平滑和强度辅助直接原始点注册基础上的紧密耦合激光雷达惯性里程计。(ii):一个在线、稳健且集中化的激光雷达测距惯性状态估计系统,用于机器人群体,能够在不部署锚点的情况下实现共定位。(iii):对所提出的框架在数据集和模拟中进行了广泛的评估,包括性能、通信和可扩展性。源代码和自定义数据集向公众开放

在这里插入图片描述
图2. CoLRIO的系统结构。在前端,预积分和直接扫描到地图匹配的里程计通过固定滞后平滑性进一步联合优化。由LIO生成的关键帧,包括UWB测量值,被传输到服务器。服务器收集所有测量数据,

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值