信息检索(五)-- 文本分析及自动标引part2

文本相似度计算

1、bag of words model
课上只讲了最简单的一个方法:
在这里插入图片描述
每个document对应一个由全部vocabulary term 对应的矩阵,每一项就是这个term在该doc中的tf-idf值。
就像这样:
在这里插入图片描述
这个的弊端显而易见:

  • 特征维度过高、矩阵稀疏
  • 没有考虑词语的顺序,bag of words

2、如何计算相似度?

只计算欧式距离不是一个好主意…因为:
在这里插入图片描述
如果我们把一篇文章d原封不动append到自己身上,形成新的文档d’,那么d和d’的欧式距离是很大的,但是两者的夹角为0.所以,想到可以用夹角来衡量相似度,引入余弦相似度。
在这里插入图片描述
由于对长度进行了归一化,上面的那个例子中,d和d’是相同的了。
余弦相似度衡量的是夹角大小:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值