什么是UTM | UTM 的基本观念和原理

什么是UTM

utm全称是Urchin Traffic Monitor,可以理解为流量监控器,用于帮助监控流量的来源

UTM的原理

utm的原理,实际上是在正常URL地址后面加上额外的字符串,用于增加额外的流量信息、当有用户访问该带有额外信息的URL地址时,服务方会解析URL里的这些信息,并用于决定接下来让用户跳转到哪个页面或者上报什么样的数据。其实这种方式在互联网上非常普遍,不止是UTM。比如说我现在infinity这个插件打开百度主页,输入搜索词“数据”,点击搜索,可以看到我们浏览器的地址栏里地址是https://www.baidu.com/baidu?isource=infinity&iname=baidu&itype=web&tn=02003390_42_hao_pg&ie=utf-8&wd=数据,这里面www.baidu.com后面的“?"后的内容,与utm的原理是一样的,isource=infinity表示的是我刚刚是在infinity这款插件里的百度搜索框里访问百度的,即表示来源;wd=数据即我的搜索关键词是数据;

当我们用这个链接访问百度的时候,百度的服务器就会将isource上报记录,用于给inifnity提供分成;而wd字段则用于显示对应的页面内容。

UTM的目的是什么

UTM的主要目

参考资源链接:[TCFormer:以人为中心的视觉Transformer,通过token聚类优化表示](https://wenku.csdn.net/doc/6bg0f75ihz?utm_source=wenku_answer2doc_content) TCFormer模型通过引入动态的token聚类机制,显著提升了以人为中心的视觉任务性能。在传统的视觉transformer模型中,图像被划分为固定大小的网格,每个网格作为一个独立的token。这种方法在处理以人为中心的任务时,可能无法有效地捕捉人体等关键区域的细节信息,同时也可能对背景区域赋予过多的计算资源。TCFormer的核心创新在于其动态的token聚类策略,能够根据图像内容的复杂性语义信息来动态调整token的大小数量。具体来说,TCFormer会首先生成一组较小的token,这些token能够覆盖整个图像。然后,模型通过聚类算法将相邻的token合并,形成更大的token。这个过程会持续进行,直到达到一个平衡点,即模型确定了哪些区域需要更多的注意力(例如人体部分),哪些区域则可以使用更少的token来表示。这种机制允许TCFormer专注于图像中的关键区域,并且能够将更多的计算资源分配给这些区域,从而在姿态估计、三维人体网格重建等任务上取得了优越的性能。在实际应用中,TCFormer已经在多个基准数据集上进行了验证,例如COCO-WholeBody3DPW数据集。这些验证展示了TCFormer在全身姿势估计三维人体网格重建方面的显著优势,进一步证明了其动态token聚类策略在实际以人为中心的视觉任务中的有效性。为了更深入地理解TCFormer的工作原理以及如何在实际项目中应用该模型,强烈推荐阅读《TCFormer:以人为中心的视觉Transformer,通过token聚类优化表示》一文。该文不仅详细介绍了TCFormer的设计理念结构细节,还提供了一系列实验分析,帮助读者全面掌握该模型在不同视觉任务中的应用。 参考资源链接:[TCFormer:以人为中心的视觉Transformer,通过token聚类优化表示](https://wenku.csdn.net/doc/6bg0f75ihz?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值