GoogLeNet图像分类网络(PyTorch)

GoogLeNet是在2014年由Google团队提出的,获得了当年ImageNet比赛中分类任务的第一名,也就是和VGG是同一年提出的,在ImageNet比赛中都获得了很好的成绩。GoogLeNet的网络结构比较复杂,具体的结构可以参考原论文,论文名字是:Going Deeper with Convolutions。
搭建模型:

import torch.nn as nn
import torch
import torch.nn.functional as F

# 模型类
class GoogLeNet(nn.Module):
    # 初始化(类别个数, 是否采用辅助分类器, 是否初始化权重)
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
        # 这部分就按照论文中的结构,类似于搭积木那样搭建就可以了
        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)  #ceil_mode=true代表向上取整

        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
        # 辅助分类器
        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        # 初始化权重
        if init_weights:
            self._initialize_weights()
    # 前向传播
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        # 如果是训练模式,并且采用辅助分类器
        if self.training and self.aux_logits:    # 推理模式不需要辅助分类器
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        # 和上面一样
        if self.training and self.aux_logits:    # eval model lose this layer
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        # 在训练模式并且采用辅助分类器的情况下,返回主分类结果和两个辅助分类器的结果
        if self.training and self.aux_logits:   # eval model lose this layer
            return x, aux2, aux1
        return x
    # 权重初始化函数
    def _initialize_weights(self):
        for m in self.modules():    # .modules()是继承于nn.moudle类的方法
                                    # 返回的是由各个层组成的迭代器
            if isinstance(m, nn.Conv2d):   # 如果是卷积层
                # 采用凯明初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    # 将偏置初始化为0
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):    # 如果是全连接层
                # 权重均值是0, 标准差是0.01
                nn.init.normal_(m.weight, 0, 0.01)
                # 偏置是0
                nn.init.constant_(m.bias, 0)


class Inception(nn.Module):    # 定义inception结构
    # 输入通道数,和七个输出通道数
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)  #第一个分支
        self.branch2 = nn.Sequential(      #第二个分支
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小
        )

        self.branch3 = nn.Sequential(     # 第三个分支
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)   # 保证输出大小等于输入大小
        )

        self.branch4 = nn.Sequential(        # 第四个分支
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)      # 分别通过四个分支
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)       #合并,在深度上进行拼接,深度会增加


class InceptionAux(nn.Module):           #辅助分类器
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)  #平均池化下采样层
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4],卷积层

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)   #将特征矩阵展平
        x = F.dropout(x, 0.5, training=self.training)    #随机失活50%的神经元,原论文中是70%
        # 在训练集的时候,self.training=true,在验证集的时候,self.training=flase
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x


class BasicConv2d(nn.Module):     #定义一个类,将一个卷积层和激活函数组合在一起
    # 输入通道数,输出通道数,卷积核大小,**是收集关键字参数,将他们组成一个字典
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs) # 卷积层
        self.relu = nn.ReLU(inplace=True) # 激活函数,inplace = True可以节约内存

    def forward(self, x):#定义一个正向传播过程
        x = self.conv(x)
        x = self.relu(x)
        return x


训练:

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torchvision
import json
import matplotlib.pyplot as plt
import os
import torch.optim as optim
from model import GoogLeNet

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224),    # 随机剪裁
                                 transforms.RandomHorizontalFlip(),    # 随机水平翻转
                                 transforms.ToTensor(),         # 转换为tensor
                                 # ToTensor()的官方解释:Converts a PIL Image or numpy.ndarray (H x W x C) in the range
                                 #     [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),   # 标准化,均值0,标准差1
    "val": transforms.Compose([transforms.Resize((224, 224)),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}


# data_root = os.path.abspath(os.path.join(os.getcwd(), "./"))  # get data root path
# os.getcwd() 获得当前脚本所在文件夹的路径
# 在后面加上./
# 获取绝对路径
data_root = os.path.abspath("../")
image_path = data_root + "/data/flower_data/"  # flower data set path,得到花文件的路径
# 在root指定的文件夹下寻找图片,对里面的图片做一定的变换
train_dataset = datasets.ImageFolder(root=image_path + "train",
                                     transform=data_transform["train"])
# print(train_dataset.class_to_idx)    {'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflowers': 3, 'tulips': 4}
# print(train_dataset.imgs)   会得到一个数组,数组中的每个元素是个元组,包括图片路径和标签
# [('E:\\pythonproject\\classical\\/data/flower_data/train\\daisy\\10140303196_b88d3d6cec.jpg', 0),
# ('E:\\pythonproject\\classical\\/data/flower_data/train\\daisy\\10172379554_b296050f82_n.jpg', 0), ...]
train_num = len(train_dataset)

# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
flower_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in flower_list.items())   # 把花和数字的值反一下
# write dict into json file  搞一个json文件
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
    json_file.write(json_str)

batch_size = 32
# DataLoader会把数据分成一批一批的,里面还有一些其他的设置参数
train_loader = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size, shuffle=True,
                                           num_workers=0)
# 验证集的处理方式类似
validate_dataset = datasets.ImageFolder(root=image_path + "val",
                                        transform=data_transform["val"])

val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                              batch_size=batch_size, shuffle=False,
                                              num_workers=0)

# test_data_iter = iter(validate_loader)
# test_image, test_label = test_data_iter.next()

# net = torchvision.models.googlenet(num_classes=5)
# model_dict = net.state_dict()
# pretrain_model = torch.load("googlenet.pth")
# del_list = ["aux1.fc2.weight", "aux1.fc2.bias",
#             "aux2.fc2.weight", "aux2.fc2.bias",
#             "fc.weight", "fc.bias"]
# pretrain_dict = {k: v for k, v in pretrain_model.items() if k not in del_list}
# model_dict.update(pretrain_dict)
# net.load_state_dict(model_dict)
# 实例化模型
net = GoogLeNet(num_classes=5, aux_logits=True, init_weights=True)
net.to(device)
# 定义损失函数,定义优化器
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0003)
# 最佳准确率
best_acc = 0.0
# 保存权重的路径
save_path = './googleNet.pth'
for epoch in range(30):
    # train
    net.train()
    # 每个epoch清零损失
    running_loss = 0.0
    # 迭代器里面有索引和数据
    for step, data in enumerate(train_loader, start=0):
        # 数据是一个元组,有图像和标签
        images, labels = data
        # 每一个batch梯度清零
        optimizer.zero_grad()
        # 将图片输入网络,得到主分类器和两个辅助分类器的结果
        logits, aux_logits2, aux_logits1 = net(images.to(device))
        # 计算三个损失
        # 这里的loss是每个batch中的平均loss
        loss0 = loss_function(logits, labels.to(device))
        loss1 = loss_function(aux_logits1, labels.to(device))
        loss2 = loss_function(aux_logits2, labels.to(device))
        # 三个损失加权求和
        loss = loss0 + loss1 * 0.3 + loss2 * 0.3
        # 反向传播求导
        loss.backward()
        # 沿梯度方向下降
        optimizer.step()

        # print statistics
        # 累加每个batch的损失
        running_loss += loss.item()
        # print train process
        rate = (step + 1) / len(train_loader)
        a = "*" * int(rate * 50)
        b = "." * int((1 - rate) * 50)
        print("\rtrain loss: {:^3.0f}%[{}->{}]{:.3f}".format(int(rate * 100), a, b, loss), end="")
    print()

    # validate
    net.eval()
    acc = 0.0  # accumulate accurate number / epoch
    with torch.no_grad():   # 不再计算梯度
        for data_test in validate_loader:
            test_images, test_labels = data_test
            # 只有主分类器的结果
            outputs = net(test_images.to(device))  # eval model only have last output layer
            predict_y = torch.max(outputs, dim=1)[1]
            # 计算所有预测正确的个数
            acc += (predict_y == test_labels.to(device)).sum().item()
        # 准确率
        accurate_test = acc / val_num
        # 如果准确率为历史最高值,就保存这次的训练结果
        if accurate_test > best_acc:
            torch.save(net.state_dict(), save_path)
            best_acc = accurate_test      # 更新最佳准确率
        # 打印一次epoch之后的训练集平均损失和验证集的准确率
        print('[epoch %d] train_loss: %.3f  test_accuracy: %.3f' %
              (epoch + 1, running_loss / step, accurate_test))

print('Finished Training')

在这里插入图片描述
在这里插入图片描述
预测:

import torch
from model import GoogLeNet
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json
# 数据预处理
data_transform = transforms.Compose(
    [transforms.Resize((224, 224)),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# load image
img = Image.open("../data/flower_predict/roses1.jpg")
plt.imshow(img)
# [N, C, H, W]
img = data_transform(img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)

# read class_indict
try:
    json_file = open('./class_indices.json', 'r')
    # 将json转化为字典
    class_indict = json.load(json_file)
except Exception as e:
    print(e)
    exit(-1)

# create model
model = GoogLeNet(num_classes=5, aux_logits=False)
# load model weights
model_weight_path = "./googleNet.pth"
missing_keys, unexpected_keys = model.load_state_dict(torch.load(model_weight_path), strict=False)
model.eval()
with torch.no_grad():
    # predict class
    output = torch.squeeze(model(img))
    predict = torch.softmax(output, dim=0)
    predict_cla = torch.argmax(predict).numpy()
# 打印预测种类和概率值
print(class_indict[str(predict_cla)], predict[predict_cla].item())
plt.show()

在这里插入图片描述
在这里插入图片描述

PyTorch中,可以使用预训练的GoogLeNet模型进行图像分类PyTorch提供`torchvision.models`模块,其中包含了多种预训练的模型,包括GoogLeNet(也称为Inception v1)。 以下是一个示例代码,展示如何使用预训练的GoogLeNet模型进行图像分类: ```python import torch import torch.nn as nn import torchvision.models as models import torchvision.transforms as transforms from PIL import Image # 加载预训练的GoogLeNet模型 model = models.googlenet(pretrained=True) # 设置模型为评估模式 model.eval() # 加载并预处理图像 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载测试图像 image = Image.open("test_image.jpg") image = transform(image).unsqueeze(0) # 添加一个维度作为批处理维度 # 使用模型进行预测 with torch.no_grad(): outputs = model(image) # 获取预测结果 _, predicted = torch.max(outputs, 1) print("预测结果:", predicted.item()) ``` 在上述示例中,我们首先使用`models.googlenet(pretrained=True)`加载了预训练的GoogLeNet模型,并将其设置为评估模式。然后我们对要进行分类的图像进行预处理,包括调整大小、中心裁剪、转换为张量和归一化。接下来,我们加载测试图像并应用预处理操作。最后,我们使用模型进行推理,并找到输出中的最大值,以获得预测结果。 请注意,在使用预训练的模型时,需要根据模型的预处理要求对图像进行相应的处理。在上述示例中,我们使用了ImageNet数据集的均值和标准差进行归一化。 另外,您需要将`test_image.jpg`替换为您自己的测试图像文件路径。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值