GoogleNet简述(图像分类篇)

文章是对博主视频讲解的一些总结。
博主链接:https://blog.csdn.net/qq_37541097?spm=1001.2014.3001.5509

1.预言

GoogLeNet来自2014年,出自Goole团队之手。

2.亮点

1.引入了Inception结构(融合了不同尺度的特征信息)===并行结构
2.使用了1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃FC层,使用平均池化层(大大减少模型参数)

2.1 Inception结构

当你不知道该采用什么样子卷积核尺寸的时候,使用这种的结构效果很好

  • 对一张图片使用不同尺度的卷积核进行特征捕捉,再最后进行拼接(保证shape相同)
    在这里插入图片描述
  • 优化inception结构,主要是加入降维的结构(减少参数量)
    在这里插入图片描述

2.2 辅助分类器

*** 为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度***
在这里插入图片描述

3.网络结构介绍

将单独的inception模块重复连接得到整个网络。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

栋哥爱做饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>