文章是对博主视频讲解的一些总结。
博主链接:https://blog.csdn.net/qq_37541097?spm=1001.2014.3001.5509
1.预言
GoogLeNet来自2014年,出自Goole团队之手。
2.亮点
1.引入了Inception结构(融合了不同尺度的特征信息)===并行结构
2.使用了1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃FC层,使用平均池化层(大大减少模型参数)
2.1 Inception结构
当你不知道该采用什么样子卷积核尺寸的时候,使用这种的结构效果很好
- 对一张图片使用不同尺度的卷积核进行特征捕捉,再最后进行拼接(保证shape相同)
- 优化inception结构,主要是加入降维的结构(减少参数量)
2.2 辅助分类器
*** 为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度***
3.网络结构介绍
将单独的inception模块重复连接得到整个网络。